Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 443: 138538, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38301559

ABSTRACT

Konjac glucomannan (KGM) is widely used as a stabilizer for the structuring of highly unsaturated oils. This study aimed to investigate the changes in structure and functional properties of soybean oil - based oleogels (emulsion template method) prepared with different amounts of KGM-modified pea isolate protein (PPI). The findings revealed that the oleogels formed three - dimensional networks through van der Waals interactions and hydrogen bonding between the stretched PPI and KGM. As the amount of KGM increased, the oil droplets were more uniformly dispersed within the continuous PPI - KGM rigid network, especially when the ratio of PPI to KGM was 4:1. This formulation also showed the highest thixotropy (73.2 %) and the best oil binding capacity (94 %). Cryo - SEM revealed that the oleogel - prepared surimi gels successfully enclosed oil droplets in a dense matrix through a dual stabilization mechanism. Additionally, the incorporation of oleogels significantly improved the textural properties of surimi in comparison to directly adding oil.


Subject(s)
Pea Proteins , Emulsions , Mannans , Gels , Organic Chemicals
2.
Food Funct ; 15(3): 1323-1339, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38205590

ABSTRACT

The remarkable performance of fucoxanthin (FX) in antioxidant and weight loss applications has generated considerable interest. However, the application of fucoxanthin in the food and pharmaceutical industries is limited due to its highly unsaturated structure. This research aimed to investigate the synergistic mechanism of a unique Pickering emulsion gel stabilized by salmon byproduct protein (SP)-pectin (PE) aggregates and evaluate its ability to enhance the stability and bioavailability of FX. Various analytical techniques, including fluorescence spectroscopy, contact angle testing, turbidity analysis, and cryo-field scanning electron microscopy, were used to demonstrate that electrostatic and hydrophobic interactions between SP and PE contribute to the exceptional stability and wettability of the Pickering emulsion gels. Rheological analysis revealed that increasing the concentration of SP-PEs resulted in shear-thinning behavior, excellent thixotropic recovery performance, higher viscoelasticity, and good thermal stability of the Pickering emulsion gels stabilized by SP-PEs(SEGs). Furthermore, encapsulation of FX in the gels showed protected release under simulated oral and gastric conditions, with the subsequent controlled release in the intestine. Compared to free FX and the control group without PE (SEG-0), SEG-4 exhibited a 1.92-fold and 1.37-fold increase in the total bioavailable fraction of FX, respectively. Notably, during the study, it was observed that SEGs have the potential to serve as cake decoration for 3D printing to replace traditional cream under lower oil phase conditions (50%). These findings suggest that SP-PEs-stabilized Pickering emulsion gels hold promise as carriers for delivering bioactive compounds, offering the potential for various innovative food applications.


Subject(s)
Pectins , Salmon , Xanthophylls , Animals , Emulsions/chemistry , Gels/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...