Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Talanta ; 235: 122791, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517649

ABSTRACT

A new type of temperature-sensitive imprinted composite membranes(ICMs) was developed. Poly N,N-diethylacrylamide (DEA) blocks, as temperature-sensitive polymer, were grafted onto the substrate of the imprinted polymer separation layer to endow membranes with better adsorption effect. The comprehensive properties of the imprinted composite membranes were adequately tested and evaluated in detail. Results showed that ReO4- -ICMs (Re-ICMs) with temperature-sensitive recognition sites could adjust the structure of the imprinted holes at different temperatures, which presented excellent performance in the selective separation and purification of ReO4-. The prepared Re-ICMs exhibit the maximum adsorption capacity of 0.1639 mmol/g at 35 °C with the equilibrium adsorption time of 2 h. After ten adsorption/desorption cycles, Re-ICMs could still maintain 73.5% of the original adsorption capacity, the separation degree of ReO4-/MnO4- was only reduced from the initial 24.5 to 15.9, and the desorption ratio dropped from 80.4% to 68.4%, indicating that Re-ICMs have excellent adsorption and separation performance and reusability.


Subject(s)
Molecular Imprinting , Adsorption , Biomimetics , Polymers , Temperature
2.
J Hazard Mater ; 417: 126072, 2021 09 05.
Article in English | MEDLINE | ID: mdl-34229408

ABSTRACT

In this work, a temperature-sensitive block polymer PDEA-b-P(DEA-co-AM) was synthesized and then introduced into the preparation of a smart Ru(Ⅲ) imprinted polymer (Ru-IIP) to selectively adsorption Ru(Ⅲ) first. Then the waste Ru-IIP was converted into a catalyst in-situ for recycle. The structure and morphology of the prepared polymer were characterized by Fourier transform infrared spectrometer, Scanning electron microscope, BET surface area and Thermogravimetric analysis. The adsorption properties of the synthesized smart material were investigated in terms of adsorption pH, adsorption kinetics and adsorption isotherm. Results documented that the optimal adsorption temperature and pH were 35 °C and 1.5 respectively, the maximum adsorption capacity was 0.153 mmol/g, and the adsorption processes of Ru-IIP were more suitable to be expressed by pseudo-first-order kinetic and Langmuir model. The selectivity studied in different binary mixed solutions showed that Ru-IIP has good selectivity, and reusability results showed that Ru-IIP still maintains a good adsorption effect after 8 cycles. In addition, the waste Ru-IIP, a Ru(Ⅲ) remained waste sample was employed as the catalyst for the synthesis of imines, and result showed the mass of adsorbent would reduce after the completion of catalysis, which could not only catalyze the reaction but also reduce pollution.


Subject(s)
Polymers , Adsorption , Catalysis , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared
3.
ACS Omega ; 5(23): 13777-13784, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32566843

ABSTRACT

A novel glutathione (GSH) surface molecularly imprinted polymer (SMIP) was prepared using modified macroporous adsorption resin (MAR) CLX1180 as a solid substrate, glutathione as a template, acrylamide (AM) and N-vinyl pyrrolidone (NVP) as functional monomers, and N,N'-methylenebisacrylamide (NMBA) as a cross-linker. The reaction could be initiated by three different ways, using CLX1180, GSH, and both, which was proved by the experimentation. The morphology and structure of this polymer were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and time-of-flight mass spectrometry (TOF-MS). The maximum adsorption capacity of GSH approached 39.03 mg·g-1, and the separation degree related to l-cysteine was as high as 4.18. Pseudo-first-order and Langmuir models were well fitting the adsorption properties. GSH-SMIP could be used for three adsorption/desorption cycles with only a slight decrease of adsorption capacity.

SELECTION OF CITATIONS
SEARCH DETAIL