Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(19): e202400876, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38477508

ABSTRACT

Lithium (Li) metal batteries (LMBs) are deemed as ones of the most promising energy storage devices for next electrification applications. However, the uneven Li electroplating process caused by the diffusion-limited Li+ transportation at the Li metal surface inherently promotes the formation of dendritic morphology and instable Li interphase, while the sluggish Li+ transfer kinetic can also cause lithiation-induced stress on the cathode materials suffering from serious structural stability. Herein, a novel electrolyte designing strategy is proposed to accelerate the Li+ transfer by introducing a trace of large organic polar molecules of lithium phytate (LP) without significantly altering the electrolyte structure. The LP molecules can afford a competitive solvent attraction mechanism against the solvated Li+, enhancing both the bulk and interfacial Li+ transfer kinetic, and creating better anode/cathode interfaces to suppress the side reactions, resulting in much improved cycling efficiency of LMBs. Using LP-based electrolyte, the performance of LMB pouch cell with a practical capacity of ~1.5 Ah can be improved greatly. This strategy opens up a novel electrolyte designing route for reliable LMBs.

2.
Angew Chem Int Ed Engl ; 63(19): e202402456, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38415324

ABSTRACT

The solid electrolyte interphase (SEI) membrane on the Li metal anode tends to breakdown and undergo reconstruction during operation, causing Li metal batteries to experience accelerated decay. Notably, an SEI membrane with self-healing characteristics can help considerably in stabilizing the Li-electrolyte interface; however, uniformly fixing the repairing agent onto the anode remains a challenging task. By leveraging the noteworthy film-forming attributes of bis(fluorosulfonyl)imide (FSI-) anions and the photopolymerization property of the vinyl group, the ionic liquid 1-vinyl-3-methylimidazolium bis(fluorosulfonyl)imide (VMI-FSI) was crosslinked with polyethylene oxide (PEO) in this study to form a self-healing film fixing FSI- groups as the repairing agent. When they encounter lithium metal, the FSI- groups are chemically decomposed into LiF & Li3N, which assist forming SEI membrane on lithium sheet and repairing SEI membrane in the cracks lacerated by lithium dendrite. Furthermore, the FSI- anions exchanged from film are electrochemically decomposed to generate inorganic salts to strengthen the SEI membrane. Benefiting from the self-healing behavior of the film, Li/LiCoO2 cells with the loading of 16.3 mg cm-2 exhibit the initial discharge capacities of 183.0 mAh ⋅ g-1 and are stably operated for 500 cycles with the retention rates of 81.4 % and the average coulombic efficiency of 99.97 %, operated between 3.0-4.5 V vs. Li+/Li. This study presents a new design approach for self-healing Li metal anodes and durable lithium metal battery.

3.
Angew Chem Int Ed Engl ; 60(18): 10056-10063, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33624367

ABSTRACT

Oxygen redox in Li-rich oxides may boost the energy density of lithium-ion batteries by incorporating oxygen chemistry in solid cathodes. However, oxygen redox in the bulk usually entangles with voltage hysteresis and oxygen release, resulting in a prolonged controversy in literature on oxygen transformation. Here, we report spectroscopic evidence of peroxo species formed and confined in silicate cathodes amid oxygen redox at high voltage, accompanied by Co2+ /Co3+ redox dominant at low voltage. First-principles calculations reveal that localized electrons on dangling oxygen drive the O-O dimerization. The covalence between the binding cation and the O-O dimer determines the degree of electron transfer in oxygen transformation. Dimerization induces irreversible structural distortion and slow kinetics. But peroxo formation can minimize the voltage drop and volume expansion in cumulative cationic and anionic redox. These findings offer insights into oxygen redox in the bulk for the rational design of high-energy-density cathodes.

4.
Nanotechnology ; 31(42): 425602, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32585648

ABSTRACT

This work reports a facile strategy to synthesize carbon-coated Li2CoSiO4/C particles with rich nanostructures by a two-step scheme starting with a low-temperature hydrothermal method. The size and morphology of particle aggregates can be regulated by the (OH-) concentration and viscosity of the precursor solution, a mixture of ethylene glycol and deionized water, for the hydrothermal synthesis. In addition to the good electrical conductivity from the carbon coating, the size of the primary nanoparticles and the mesopore associated with the aggregations play an important role in improving the electrochemical properties of polyanionic Li2CoSiO4. The low-dimensional belt-like and sheet-like Li2CoSiO4/C nanomaterials present a higher reversible capacity 136.6 mAh g-1 and 147 mAh g-1, respectively, in the first charging-discharging cycle between 2 V and 4.6 V. XRD, SEM/TEM, and EDS are used to characterize the crystalline structure and aggregation patterns. TGA and Raman spectra are employed to analyze the carbon coating on different morphologies. The analysis of electrochemical impedance spectroscopy highlights the critical role of the interface between the electrolyte and particles. This study provides insights into the rational design and synthesis of high-performance polyanionic cathodes including silicates.

5.
J Am Chem Soc ; 141(27): 10751-10759, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31251049

ABSTRACT

Peroxo/superoxo is a key intermediate in oxygen evolution/reduction reactions in (electro)catalysis. However, peroxo/superoxo analogues have aroused controversies relevant to the origin of oxygen-anion redox. Specifically, some characteristics such as the magnitude of the O-O bond length in bulk materials have been puzzling during oxygen oxidation, as has the relationship between the peroxo/superoxo intermediate and the release of oxygen. The latter is a major safety concern to the application of oxygen-anion redox in lithium ion batteries. Herein, we present a unified modeling of the full delithiation process for model system Li2MnO3 by using first-principles calculations. We find that the cationic antisite defects and the electron deficiency are two major limiting factors in the anionic oxidation whose state can evolve, as the degree of delithiation increases, from the electron/hole, through peroxo-like O2δ- dimer formation, to the eventual release of gas-phase oxygen molecule. During the delithiation process, the dangling oxygen (i.e., singly coordinated with Mn) pairs play a critical role in intermediate dimer formation. Meanwhile, we identify five generic binding patterns of O2δ- dimers with Mn ions for which the O-O bond length varies from 1.45 Å in the peroxo state to 1.22 Å in the gas-phase oxygen molecule. Moreover, the dominant features of the three molecular orbitals, σc, πa, and πb, are distinguished, with the corresponding energy levels being highly delocalized and mixed as a result of the interplay with the host lattice. This work provides a deep understanding of the intermediate states of the anionic redox and suggests new strategies that mitigate oxygen release for the design of highly efficient and safe Li-rich cathode materials.

6.
Phys Chem Chem Phys ; 20(31): 20363-20370, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-29878019

ABSTRACT

Anionic redox revealed reversibility in Li-rich layered oxides Li2MO3, which was strongly dependent on transition metal element M and geometrical structures. This sheds new light on high energy lithium ion batteries, and also inspires the question whether super high capacity is achievable in lithium compounds with stoichiometry close to Li2O. The tetrahedron structured Li6CoO4 is one kind of oxides with extremely high Li stoichiometry. In this study, DFT calculations combined with ex situ experimental stoichiometry detection are performed to investigate the delithiation mechanism during its full range. It reveals that Li6CoO4 undergoes two distinct delithiation reactions. The first process is a topotactic delithiation with conventional oxidation of Co2+ to Co3+ then continuing to Co4+; and the successive one is suggested to be decomposition reaction to Li2O and cobalt oxides. Surprisingly, very dense and uniform cracks are present over the cross-section of the micron-sized particles even at the early stage of charging with a capacity of 320 mA h g-1, the EDS of which suggests that the delithiated phase is homogeneous Li4CoO4. This phenomenon may be attributed to the unusually large discrepancy between ionic and electronic conductivity. CI-NEB calculations show a barrier of ca. 0.31 eV for the two dimensional Li ion migration network, corresponding to an ionic conductivity in the order of 10-6 S cm-1. On the other hand, there is lack of an effective path for electron hopping, because CoO4 tetrahedra are isolated from each other, pointing to electronic conductivity lower than 10-14 S cm-1. This study proposes a strategy to achieve super high capacity by invoking a reversible anionic redox to replace the decomposition reaction in tetrahedron structured lithium compounds. It is also worth pointing out that the geometrical connectivity of MO4 is crucial in the design of a new generation of cathode materials.

7.
RSC Adv ; 8(40): 22813-22822, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-35539742

ABSTRACT

Li2CoSiO4 has the potential for use as a high safety, high energy-density cathode material for lithium-ion batteries but suffers from bad electrochemical performance. Herein, we demonstrate a profound study on the effects of carbon coating and Al-doping on the electrochemistry of Li2CoSiO4 synthesized by a two-step method. The synthesized 4 at% Al-doped Li2CoSiO4/C allows two lithium removals between 2.5 and 4.6 V, showing a first charge and discharge capacity of 331 and 140 mA h g-1, respectively, and a high capacity retention in cycling with no voltage degradation. The relationship between the improved performance and the supporting structural characteristics was studied by galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy, coupled with material characterizations. This work demonstrates that electrical conductivity plays a central role in controlling the electrochemical performance of the modified Li2CoSiO4. Both the reversibility of delithiation and the irreversible capacity loss are strongly dependent on the electrical condition of the particles, which can be modified by Al-doping and carbon coating. The characteristics of carbon layers are analyzed because of their importance in improving the electrical properties and achieving a solution to the challenges with Li2CoSiO4. We that show Li2CoSiO4 could have unique electrochemical characteristics that satisfy all the requirements of high safety, high energy density, and high compatibility with the current organic electrolytes if appropriately modified.

8.
ACS Appl Mater Interfaces ; 9(41): 36377-36384, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28959878

ABSTRACT

The degradation mechanism of dimethyl carbonate electrolyte dissociation on the (010) surfaces of LiCoO2 and delithiated Li1/3CoO2 were investigated by periodic density functional theory. The high-throughput Madelung matrix calculation was employed to screen possible Li1/3CoO2 supercells for models of the charged state at 4.5 V. The result shows that the Li1/3CoO2(010) surface presents much stronger attraction toward dimethyl carbonate molecule with the adsorption energy of -1.98 eV than the LiCoO2(010) surface does. The C-H bond scission is the most possible dissociation mechanism of dimethyl carbonate on both surfaces, whereas the C-O bond scission of carboxyl is unlikely to occur. The energy barrier for the C-H bond scission is slightly lower on Li1/3CoO2(010) surface. The kinetic analysis further shows that the reaction rate of the C-H bond scission is much higher than that of the C-O bond scission of methoxyl by a factor of about 103 on both surfaces in the temperature range of 283-333 K, indicating that the C-H bond scission is the exclusive dimethyl carbonate dissociation mechanism on the cycled LiCoO2(010) surface. This study provides the basis to understand and develop novel cathodes or electrolytes for improving the cathode-electrolyte interface.

9.
J Comput Chem ; 37(16): 1476-83, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27010432

ABSTRACT

A new direct summation method, named as polyhedron method, is proposed to calculate Madelung energy. This method calculates sums of electrostatic interactions over sets of neutral polyhedron unit pairs rather than conventional ion pairs; this gives Madelung constant in a matrix. With robustly rapid convergence, polyhedron method is generally applicable for complex compounds containing multiple polyhedral building-blocks and numerical polyhedral connection modes. The matrical analysis suggests face-sharing between octahedral pairs and edge-sharing between tetrahedral pairs can be electrostatically stable, against Pauling's third rule. Further, the matrical calculation of Madelung energies offers a unique advantage to evaluate enormous configurations of cation distributions in a given lattice in a high-throughput manner. That is applicable to study solid solution composites, polymorphism, and defect structures, including but not limited to intermediate phase of delithiated cathode compounds, charge order or antisite defects, and extensively magnetic order. © 2016 Wiley Periodicals, Inc.

10.
Phys Chem Chem Phys ; 18(9): 6893-900, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26879071

ABSTRACT

Electrochemical cycling stabilities were compared for undoped and Al/Co dual-doped spinel LiMn2O4 synthesized by solid state reactions. We observed the suppression of particle fracture in Al/Co dual-doped LiMn2O4 during charge/discharge cycling and its distinguishable particle morphology with respect to the undoped material. Systematic first-principles calculations were performed on undoped, Al or Co single-doped, and Al/Co dual-doped LiMn2O4 to investigate their structural differences at the atomistic level. We reveal that while Jahn-Teller distortion associated with the Mn(3+)O6 octahedron is the origin of the lattice strain, the networking -i.e. the distribution of mixed valence Mn ions - is much more important to release the lattice strain, and thus to alleviating particle cracking. The calculations showed that the lattice mismatching between Li(+) intercalation and deintercalation of LiMn2O4 can be significantly reduced by dual-doping, and therefore also the volumetric shrinkage during delithiation. This may account for the near disappearance of cracks on the surface of Al/Co-LiMn2O4 after 350 cycles, while some obvious cracks have developed in undoped LiMn2O4 at similar particle size even after 50 cycles. Correspondingly, Al/Co dual-doped LiMn2O4 showed a good cycling stability with a capacity retention of 84.1% after 350 cycles at a rate of 1C, 8% higher than the undoped phase.

11.
Phys Chem Chem Phys ; 16(26): 13255-61, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24871040

ABSTRACT

The d-electron localization is widely recognized as important to transport properties of transition metal compounds, but its role in the energy conversion of intercalation reactions of cathode compounds is still not fully explored. In this work, the correlation of intercalation potential with electron affinity, a key energy term controlling electron intercalation, then with d-electron configuration, is investigated. Firstly, we find that the change of the intercalation potential with respect to the transition metal cations within the same structure class is correlated in an approximately mirror relationship with the electron affinity, based on first-principles calculations on three typical categories of cathode compounds including layered oxides and polyoxyanions Then, by using a new model Hamiltonian based on the crystal-field theory, we reveal that the evolution is governed by the combination of the crystal-field splitting and the on-site d-d exchange interactions. Further, we show that the charge order in solid-solution composites and the compatibility of multi-electron redox steps could be inferred from the energy terms with the d-electron configuration alternations. These findings may be applied to rationally designing new chemistry for the lithium-ion batteries and other metal-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...