Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Mol Neurosci ; 73(2-3): 143-158, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36749492

ABSTRACT

Cytohesin-4 (CYTH4) is a member of the PSCD family. Members of this family appear to mediate the regulation of protein sorting and membrane trafficking. In previous studies, CYTH4 has been linked with multiple brain diseases, but not glioma, the most common type of brain tumor. We utilized multiple glioma single-cell RNA sequencing datasets and bulk data from the TCGA and CGGA and conducted GSEA and KEGG and GO analyses. Biomarker potential was tested via ROC curve analysis. Radar plots were used to study TMB and MSI correlations. Immune cell studies were conducted using CIBERSORT. All statistical analyses were performed in R software and GraphPad Prism 9. CYTH4 was overexpressed in the glioma macrophage population in several single-cell RNA sequencing datasets and was most correlated with M2 macrophages. CYTH4 expression was higher in tumor tissues and was correlated with survival and WHO grade. ROC curves suggested CYTH4 overexpression to be a potential glioma biomarker. GSEA results indicated a relationship between CYTH4 and apoptosis, and PPI analysis supported a pyroptosis correlation. KEGG and GO analysis results linked CYTH4 with antigen processing and presentation and neutrophil activities. In summary, the study identified a CYTH4/pyroptosis/M2 macrophage axis. CYTH4 was upregulated in M2 macrophages in glioma and affected pyroptosis. CYTH4 overexpression is a potential biomarker predicting a poor prognosis.


Subject(s)
Brain Neoplasms , Glioma , Humans , Up-Regulation , Pyroptosis , Transcriptional Activation , Glioma/genetics , Brain Neoplasms/genetics , Macrophages , Cell Adhesion Molecules , Guanine Nucleotide Exchange Factors
2.
Biosens Bioelectron ; 227: 115159, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36841114

ABSTRACT

A highly invasive subpopulation of circulating tumor cells (CTCs) may constitute seeds for metastases, which are therefore considered functional CTCs. However, there are few effective strategies to detect CTCs based on invasive phenotypes. Herein, we focused on functional CTCs with high invasiveness and designed an integrated microfluidic system to differentiate the invasive potential of CTCs for more accurate metastasis prediction. By combining size-based enrichment and invasiveness-based analysis, the system managed to continuously remove most hemocytes by 8 µm gaps and analyze the invasiveness of the enriched CTCs by Matrigel loading. In addition to a device, a single pump and a Petri dish were included to provide an FBS gradient for driving cell invasion and maintain a long-term cell culture. The system successfully identified functional CTCs derived from different types of cancer patients, including colorectal, kidney and bladder cancer patients, using whole blood without any sample pretreatment process. Within 28 cases of colorectal cancer patients, functional CTCs were detected in 61.54% of patients with metastases, along with stronger invasiveness evaluated by migration/invasion distance than those from patients without metastases (P < 0.05). Furthermore, one bladder cancer patient was diagnosed with recurrence six months after detection, indicating the excellent value for cancer metastases prediction. In addition, great phenotypic heterogeneity of CTCs was also observed at the single-cell level, including invasion, proliferation and dormancy, which provided an effective strategy for metastasis prediction based on CTC function as a single cell.


Subject(s)
Biosensing Techniques , Neoplastic Cells, Circulating , Urinary Bladder Neoplasms , Humans , Neoplastic Cells, Circulating/pathology , Microfluidics , Cell Separation , Cell Size , Cell Line, Tumor
3.
Anal Chem ; 95(2): 1251-1261, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36583760

ABSTRACT

Liquid biopsy provides non-invasive and real-time detection for cancer diagnosis, but the lack of specific markers targeted to liquid biopsy components, such as circulating tumor cells (CTCs) and exosomes, has impeded its effective utilization in clinical settings. W3 is an aptamer, and its target has been previously demonstrated to be a predictor of colorectal cancer (CRC) metastasis. Herein, we developed a W3-based molecular beacon (MAB-W3-3G) to specifically detect CTCs and exosomes derived from CRC patients by modifying the W3 sequence and adding a fluorescent group FAM at the 5' end and a quencher group BHQ1 at the 3' end, resulting in a detectable green fluorescence only in the presence of the target. MAB-W3-3G retained features similar to those of the original W3, including high specificity and affinity for metastatic CRC cells, as well as excellent plasma stability. Notably, W3 target-positive CTCs were visualized, positive exosomes were quantified in CRC patients' whole blood without any sample pretreatment, and both detections could be finished in one step without any routine washing procedures. For CRC, the W3 target-positive CTC enumeration in metastasis was higher than that in non-metastasis (p < 0.01), and the quantitation of positive exosomes was correlated with CRC patients (p < 0.0001). Moreover, the MAB-W3-3G-based simultaneous detection of CTCs and exosomes was proven to have the potential for more precise clinical diagnosis. In conclusion, MAB-W3-3G could detect CTCs and exosomes in the blood samples of tumor patients with simple manipulation, rapid analysis, and high specificity, providing an effective liquid biopsy tool for the prediction of CRC.


Subject(s)
Colorectal Neoplasms , Exosomes , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Exosomes/pathology , Colorectal Neoplasms/pathology , Oligonucleotides , Liquid Biopsy , Biomarkers, Tumor
4.
Front Mol Biosci ; 9: 790706, 2022.
Article in English | MEDLINE | ID: mdl-35274004

ABSTRACT

Background: Cancer is considered one of the most lethal diseases worldwide. Venous thromboembolism (VTE) is the second leading cause of death in cancer patients. As one of the most reproducible predictors of thromboembolism, the D-dimer level is commonly considered by oncologists. Previous studies have demonstrated that the most correlated genes at the D-dimer level are F3, F5 and FGA. Methods: Using data from TCGA and multiple webtools, including GEPIA2, UALCAN, TIMER2.0, Kaplan-Meier Plotter and CIBERSORTx, we analyzed the tumor mutation burden (TMB), microsatellite instability (MSI) and functions of D-dimer-related genes in cancer. Validation was conducted via quantitative real-time polymerase chain reaction (qRT-PCR) and independent GEO + GTEx cohort. All statistical analyses were performed in R software and GraphPad Prism 9. Results: F3, F5 and FGA were expressed differently in multiple cancer types. TMB, MSI and anti-PD1/PDL1 therapy responses were correlated with D-dimer-related gene expression. D-Dimer-related genes expression affect the survival of cancer patients. F3 and F5 functioned in TGF-beta signaling. F3 and F5 were related to immunity and affected the fraction of CD8+ T cells by upregulating the TGF-beta signaling pathway, forming an F3, F5/TGF-beta signaling/CD8+ T cell axis. Conclusion: F3, F5 and FGA serve as satisfactory GC multibiomarkers and potentially influence the immune microenvironment and survival of cancer patients by influencing TGF-beta signaling.

5.
Environ Sci Pollut Res Int ; 25(16): 15844-15861, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29582330

ABSTRACT

Brownfield sites pollution and remediation is an urgent environmental issue worldwide. The screening and assessment of remedial alternatives is especially complex owing to its multiple criteria that involves technique, economy, and policy. To help the decision-makers selecting the remedial alternatives efficiently, the criteria framework conducted by the U.S. EPA is improved and a comprehensive method that integrates multiple criteria decision analysis (MCDA) with numerical simulation is conducted in this paper. The criteria framework is modified and classified into three categories: qualitative, semi-quantitative, and quantitative criteria, MCDA method, AHP-PROMETHEE (analytical hierarchy process-preference ranking organization method for enrichment evaluation) is used to determine the priority ranking of the remedial alternatives and the solute transport simulation is conducted to assess the remedial efficiency. A case study was present to demonstrate the screening method in a brownfield site in Cangzhou, northern China. The results show that the systematic method provides a reliable way to quantify the priority of the remedial alternatives.


Subject(s)
Environmental Restoration and Remediation/methods , Groundwater/analysis , Water Pollution, Chemical/prevention & control , Decision Support Techniques , Models, Theoretical
6.
Sci Rep ; 6: 38376, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27917905

ABSTRACT

Metastasis is an important hallmark of malignant tumors. In this study, we developed a microfluidic system to screen highly metastatic sublines via differential resolution of cell invasiveness. The system was composed of a PDMS-glass device connected with a syringe pump and a Petri dish. To facilitate the selection process, a long-term cell invasion driving force based on a chemotactic factor gradient was created using the Petri dish-based liquid supply pattern, and the invasive cells were collected for round-by-round selection via an open region in the chip. Using the system, we established an SGC-7901/B2 subline from the human gastric cancer SGC-7901 cell line by only two rounds of selection. In vitro assays showed that the SGC-7901/B2 cells were superior to the parental cells in proliferation and invasiveness. Furthermore, an in vivo tumorigenicity assay demonstrated that compared with the parental cells, the subline had stronger spontaneous metastatic and proliferative capability, which led to a shorter survival duration. Additionally, the protein expression differences including E-cadherin and Smad3 between the subline and parental cells were revealed. In conclusion, this microfluidic system is a highly effective tool for selecting highly metastatic sublines, and SGC-7901/B2 cells could serve as a potential model for tumor metastasis research.


Subject(s)
Cell Culture Techniques , Founder Effect , Gene Expression Regulation, Neoplastic , Lab-On-A-Chip Devices , Stomach Neoplasms/genetics , Animals , Antigens, CD , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Transplantation , Signal Transduction , Smad3 Protein/genetics , Smad3 Protein/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Survival Analysis
7.
Biomaterials ; 35(25): 6998-7007, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24857291

ABSTRACT

The development of diagnostic/therapeutic strategies against metastasis-related molecular targets is critical for improving the survival rate of cancer patients. Subtractive Cell-SELEX was performed using highly metastatic colorectal cancer (CRC) LoVo cells and non-metastatic HCT-8 cells as the target and negative cells, respectively, for the selection of metastatic-specific aptamers. This process generated seven aptamers that displayed highly specific binding to the target cells with Kds in the nanomolar range. Based on the distinct chemical/biological properties of their individual cell surface targets, the aptamers were separately functionalized: the receptor-targeting aptamer W14 was used as a carrier for doxorubicin, resulting in the specific delivery of the drug to the target cells and a significant reduction of its cytotoxicity to non-target cells, and the non-receptor-binding aptamer W3 was used as a molecular probe conjugated to quantum dots for the targeted imaging of metastatic cancer cell lines, spontaneous lung metastasis murine tissue, and metastatic CRC patient tissues. In addition, these aptamers can be used in combination due to their lack of detectable mutual-binding interference. The study demonstrates that a panel of aptamers that recognize distinct features of target molecules can be obtained through single Cell-SELEX selection, and the selected aptamers may be individually functionalized for specific applications and/or utilized in combination.


Subject(s)
Aptamers, Nucleotide/chemistry , Colorectal Neoplasms/metabolism , Drug Delivery Systems/methods , SELEX Aptamer Technique/methods , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , Diagnostic Imaging/methods , Doxorubicin/pharmacology , Female , Humans , Mice , Mice, Nude , Molecular Probes , NIH 3T3 Cells , Quantum Dots
SELECTION OF CITATIONS
SEARCH DETAIL
...