Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Small ; 20(3): e2305529, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37688316

ABSTRACT

Reducing non-radiative recombination energy loss (ΔEnonrad ) in organic solar cells (OSCs) has been considered an effective method to improve device efficiency. In this study, the backbone of PTBTT-4F/4Cl is divided into D1-D2-D3 segments and reconstructed. The isomerized TPBTT-4F/4Cl obtains stronger intramolecular charge transfer (ICT), thus leading to elevated highest occupied molecular orbital (HOMO) energy level and reduced bandgap (Eg ). According to ELoss  = Eg- qVOC , the reduced Eg and enhanced open circuit voltage (VOC ) result in lower ELoss , indicating that ELoss has been effectively suppressed in the TPBTT-4F/4Cl based devices. Furthermore, compared to PTBTT derivatives, the isomeric TPBTT derivatives exhibit more planar molecular structure and closer intermolecular stacking, thus affording higher crystallinity of the neat films. Therefore, the reduced energy disorder and corresponding lower Urbach energy (Eu ) of the TPBTT-4F/4Cl blend films lead to low ELoss and high charge-carrier mobility of the devices. As a result, benefitting from synergetic control of molecular stacking and energetic offsets, a maximum power conversion efficiency (PCE) of 15.72% is realized from TPBTT-4F based devices, along with a reduced ΔEnonrad of 0.276 eV. This work demonstrates a rational method of suppressing VOC loss and improving the device performance through molecular design engineering by core segmentation and isomerization.

2.
ACS Appl Mater Interfaces ; 15(33): 39657-39668, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37578345

ABSTRACT

Incorporating ITIC derivatives as guest acceptors into binary host systems is an effective strategy for constructing high-performance ternary organic solar cells (TOSCs). In this work, we introduced A-D-A type ITIC derivatives PTBTT-4F (asymmetric) and PTBTP-4F (symmetric) into the PM6:BTP-BO-4F (Y6-BO) binary blend and investigated the impacts of two guest acceptors on the performance of TOSCs. Differentiated device performance was observed, although PTBTT-4F and PTBTP-4F presented similar chemical structures and comparable absorptions. The PTBTT-4F ternary devices exhibited an improved power conversion efficiency (PCE) of 17.67% with increased open circuit (VOC) and current density (JSC), whereas the PTBTP-4F-based ternary devices yielded a relatively lower PCE of 16.34%. PTBTT-4F showed much better compatibility with the host acceptor BTP-BO-4F, so that they formed a well-mixed alloy phase state; more precise phase separation and increased crystallinity were thus induced in the ternary blends, leading to reduced molecular recombination and improved charge mobilities, which contributed to improved fill factors of the ternary devices. In addition, the optimized PTBTT-4F devices exhibited good performance tolerance of the photoactive layer thickness, as they even delivered a PCE of 15.25% when the active layer was as thick as up to ∼300 nm.

3.
J Phys Chem Lett ; 10(17): 5105-5110, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31419133

ABSTRACT

Three Pt(II) complexes, Pt(czpyOczpy), Pt(czpyOczpy-Me), and Pt(czpyOczpy-OMe), are designed to elucidate the inherent relationship between electronically excited-state and photo- and electroluminescent properties. These complexes showed a blue-shifted phosphorescence with a narrowing spectral profile, which are interrelated with the variation of T1 states from the 3MLCT, hybridized 3(MLCT/LC) to 3LC transition. This change is ascribed to the destabilization of LUMO energy levels on the pyridinyl site, leading to more electron distribution on the carbazolide unit in T1. Moreover, the solution-processed device of Pt(czpyOczpy-OMe), featuring a 3LC transition, shows the best color purity of blue light. Compared to the device of Pt(czpyOczpy) with 3MLCT character, the device of Pt(czpyOczpy-Me) with hybridized 3(MLCT/LC) exhibits improved color purity and external quantum efficiency (10.2%) at a luminance of 1000 cd/m2. Therefore, this work gives a mechanistic interpretation of the phosphorescent properties of tetradentate Pt(II) complexes derived from the manageable lowest triplet excited states.

4.
ACS Appl Mater Interfaces ; 10(28): 23928-23937, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29952555

ABSTRACT

Rapid progress achieved on perovskite solar cells raises the expectation for their further development toward practical applications. Moisture sensitivity of perovskite materials is one of the major obstacles which limits the long-term durability of the perovskite solar cells, especially in outdoor operation where rainfall and water accumulation on the solar panels often occur. Micro/nanopinholes within the functional layers of the devices usually lead to water vapor penetration, thus subsequent decomposition of perovskites, and finally poor device performance and shortened operational lifetime. In this work, low-temperature atomic layer deposition (ALD) technique was utilized to incorporate pinhole-free metal oxide layers (TiO2 and Al2O3) into an inverted perovskite solar cell consisting of indium tin oxide/NiO/perovskite/PC61BM/TiO2/Ag. The interface properties between the inserted TiO2 layer and the perovskite layer were investigated by X-ray photoelectron spectroscopy. The results showed that TiO2 ALD fabrication process had made negligible degradation to the perovskite layer. The TiO2 layer can significantly reduce interfacial charge recombination loss, improve interfacial contact, and enhance water resistance. A maximum power conversion efficiency (PCE) of 18.3% was achieved for devices with TiO2 interface layers. A stacked Al2O3 encapsulation layer was designed and deposited on top of the devices to further improve device stability under harsh environmental conditions. The encapsulated devices with the best performance retained 97% of the initial PCE after being stored in ambient condition for a thousand hours. They also showed great water resistance, and no significant degradation in terms of PCE and photocurrent of the devices was observed after they were immersed in deionized water for as long as 2 h. Our approach offers a promising way of developing highly efficient and stable perovskite solar cells under real-world operational conditions.

5.
ACS Appl Mater Interfaces ; 10(27): 23235-23246, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29911382

ABSTRACT

We present here a series of wide-band-gap ( Eg: >1.8 eV) polymer donors by incorporating thiophene-flanked phenylene as an electron-donating unit and quinoxaline as an electron-accepting co-unit to attain large open-circuit voltages ( Vocs) and short-circuit currents ( Jscs) in nonfullerene organic solar cells (OSCs). Fluorination was utilized to fine-tailor the energetics of polymer frontier molecular orbitals (FMOs) by replacing a variable number of H atoms on the phenylene moiety with F. It was found that fluorination can effectively modulate the polymer backbone planarity through intramolecular noncovalent S···F and/or H···F interactions. Polymers (P2-P4) show an improved molecular packing with a favorable face-on orientation compared to their nonfluorinated analogue (P1), which is critical to charge carrier transport and collection. When mixed with IDIC, a nonfullerene acceptor, P3 with two F atoms, achieves a remarkable Voc of 1.00 V and a large Jsc of 15.99 mA/cm2, simultaneously, yielding a power-conversion efficiency (PCE) of 9.7%. Notably, the 1.00 V Voc is among the largest values in the IDIC-based OSCs, leading to a small energy loss ( Eloss: 0.62 eV) while maintaining a large PCE. The P3:IDIC blend shows an efficient exciton dissociation through hole transfer even under a small energy offset of 0.16 eV. Further fluorination leads to the polymer P4 with increased chain-twisting and mismatched FMO levels with IDIC, showing the lowest PCE of 2.93%. The results demonstrate that quinoxaline-based copolymers are promising donors for efficient OSCs and the fluorination needs to be fine-adjusted to optimize the interchain packing and physicochemical properties of polymers. Additionally, the structure-property correlations from this work provide useful insights for developing wide-band-gap polymers with low-lying highest occupied molecular orbitals to minimize Eloss and maximize Voc in nonfullerene OSCs for efficient power conversion.

6.
J Phys Chem Lett ; 9(9): 2285-2292, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29664638

ABSTRACT

The structural and photophysical properties of tetradentate Pt(ppzOppz), Pt(ppzOpopy), Pt(ppzOczpy), and Pt(czpyOczpy) have been experimentally and theoretically explored. Single-crystal diffraction measurements provided accurate structural information. Electrochemical and photophysical characterizations revealed internal electronic energy levels in ground and excited states. (Time-dependent) Density functional theory calculation revealed electron distributions in transition processes of S0 → S1 and S1 → T1 → S0. Electronic transition study indicated that Pt(ppzOppz) demonstrated mixed MLCT/LC states and Pt(czpyOczpy) showed MLCT-dominated states in S1 and T1. Both Pt(ppzOpopy) and Pt(ppzOczpy) presented strong delocalized spin transition (DST) during intersystem crossing. Upon frame modification of Pt(ppzOczpy), we found that their S1 and T1 can be independently manipulated. These blue emitters showed a tunable and narrow emission band (the narrowest fwhm was 19 nm) with luminescence efficiency as high as 86%. The findings of the DST transition mode in the neutral Pt(II) complexes provide guidance for rational design of novel phosphorescent materials.

7.
RSC Adv ; 8(44): 25031-25039, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-35542151

ABSTRACT

Three small molecules SBF-1DPPDCV, SBF-2DPPDCV and SBF-4DPPDCV consisting of a spirobifluorene (SBF) unit as the core and one, two, and four diketopyrrolopyrrole dicyanovinyl (DPPDCV) units as the arms have been designed and synthesized for solution-processed bulk-heterojunction (BHJ) solar cells. The UV-Vis absorption and cyclic voltammetry measurement of these compounds showed that all these compounds have an intense absorption band over 300-750 nm with a LUMO energy level at around -3.87 eV. When pairing with PTB7-Th as the donor, devices fabricated based on PTB7-Th : SBF-4DPPDCV blends showed a decent PCE of 3.85%, which is the highest power conversion efficiency (PCE) amongst the three DPP acceptor fabricated devices without extra treatment. Devices with SBF-1DPPDCV and SBF-2DPPDCV acceptors showed lower PCEs of 0.26% for SBF-1DPPDCV and 0.98% for SBF-2DPPDCV respectively. The three dimensional (3D) structure of SBF-4DPPDCV facilitates the formation of a 3D charge-transport network and thus enables a rational electron-transport ability (1.04 × 10-4 cm2 V-1 s-1), which further leads to a higher J sc (10.71 mA cm-2). These findings suggest that multi-arm acceptors present better performance than one-arm or two-arm molecules for organic solar cells.

8.
ACS Appl Mater Interfaces ; 9(35): 29924-29931, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28795560

ABSTRACT

A perylenediimide-based (PDI-based) small molecular (SM) acceptor with both an extended π-conjugation and a three-dimensional structure concurrently is critical for achieving high-performance PDI-based fullerene-free organic solar cells (OSCs). Herein, a novel PDI-based SM acceptor has been successfully synthesized through fusing PDI units with a spiro core 4,4'-spirobi[cyclopenta[2,1-b;3,4-b']dithiophene (SCPDT) together via ß-position coupling with thiophene bridges. An enhanced absorption from 350 to 520 nm has been observed. Moreover, compared with previously reported acceptor SCPDT-PDI4, in which the PDI units and SCPDT are not fused together, the LUMO energy level of FSP (the new SCPDT-based molecule) increases. OSCs containing PTB7-Th as a donor and FSP as an acceptor have been demonstrated to show an excellent performance with a power conversion efficiency as high as 8.89%. This result might be attributed to the efficient and complementary photoabsorption, balanced carrier mobilities, and favorable phase separation in the blend film. This research could offer an effective strategy to design novel high-performance PDI-based acceptors.

9.
Chem Asian J ; 12(16): 2052-2056, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28731286

ABSTRACT

The incorporation of fluorine atoms in organic semiconducting materials has attracted much attention recently due to its unique function to manipulate the molecular packing, film morphology and molecular energy levels. In this work, two perylenediimide (PDI) derivatives FPDI-CDTph and FPDI-CDTph2F were designed and synthesized to investigate the impact of fluorination on non-fullerene acceptors. Both FPDI-CDTph and FPDI-CDTph2F exhibited strong and broad absorption profiles, suitable lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, and good electron transport ability. Compared with FPDI-CDTph, the fluorinated acceptor (FPDI-CDTph2F) afforded an optimal bulk heterojunction morphology with an interconnected and nanoscale phase separated structure that allowed more efficient exciton dissociation and balanced charge transport. Consequently, organic solar cells based on FPDI-CDTph2F showed a much higher power conversion efficiency (PCE) of 6.03 % than that of FPDI-CDTph based devices (4.10 %) without any post-fabrication treatment.

10.
ChemSusChem ; 10(13): 2833-2838, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28517241

ABSTRACT

Solution-processed hole transporting materials (HTMs) that are dopant-free show promise for use in low-cost, high-performance perovskite solar cells (PSCs). The highest-efficiency PSCs use organic HTMs, many of which have low mobilities and therefore require doping, which lowers the device stability. Additionally, these materials are not easily scaled because they often require complicated synthesis. Two new HTMs (IDT-TPA and IDTT-TPA) were synthesized, which contained either an extended fused-ring indacenodithiophene (IDT) or indacenodithienothiophene (IDTT) core and strong electron-donating methoxytriphenylamine (TPA) groups as the end-capping units. The extended conjugation in the backbone of IDTT-TPA resulted in stronger π-π interactions (3.321 Å) and a higher hole mobility of 6.46×10-4  cm2 V-1 s-1 when compared with that of IDT-TPA (9.53×10-5  cm2 V-1 s-1 ). A dopant-free, planar PSC that contained IDTT-TPA was fabricated and exhibited a high power conversion efficiency (PCE) of 15.7 %. This cell exhibited a higher PCE and less hysteresis than devices that contained IDT-TPA.


Subject(s)
Amines/chemistry , Calcium Compounds/chemistry , Electric Power Supplies , Oxides/chemistry , Solar Energy , Thiophenes/chemistry , Titanium/chemistry , Electron Transport , Models, Molecular , Molecular Conformation
11.
Chem Asian J ; 12(7): 721-725, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28124409

ABSTRACT

Derived from perylenediimide (PDI) building blocks, 3D PDI molecules are considered as a type of promising structure to overcome molecular aggregation, thus improving the performance of organic solar cells. Herein, we report a novel PDI-based derivative, SCPDT-PDI4 , with four PDI units connected to a unique spiro core. Attributed to this novel molecular design, SCPDT-PDI4 exhibits a rigid 3D structure, in which the aggregation tendency of PDI chromophores could be effectively attenuated. Additionally, strong intramolecular charge transfer and high charge mobility are achieved due to the well-conjugated structure and electron-rich property of SCPDT. Therefore, fullerene-free organic solar cells based on SCPDT-PDI4 and PTB7-Th achieve a remarkable high efficiency of 7.11 %. Such an excellent result demonstrates the opportunity of SCPDT to be a promising building block for non-fullerene acceptors.

12.
Chemistry ; 18(38): 12140-51, 2012 Sep 17.
Article in English | MEDLINE | ID: mdl-22893502

ABSTRACT

A new series of 2,1,3-benzothiadiazole (BT) acceptors with different conjugated aryl-vinylene side chains have been designed and used to build efficient low-bandgap (LBG) photovoltaic copolymers. Based on benzo[1,2-b:3,4-b']dithiophene and the resulting new BT derivatives, three two-dimensional (2D)-like donor (D)-acceptor (A) conjugated copolymers have been synthesised by Stille coupling polymerisation. These copolymers were characterised by NMR spectroscopy, gel-permeation chromatography, thermogravimetric analysis and differential scanning calorimetry. UV/Vis absorption and cyclic voltammetry measurements indicated that their optical and electrochemical properties can be facilely modified by changing the structures of the conjugated aryl-vinylene side chains. The copolymer with phenyl-vinylene side chains exhibited the best light harvesting and smallest bandgap of the three copolymers. The basic electronic structures of D-A model compounds of these copolymers were also studied by DFT calculations at the B3LYP/6-31G* level of theory. Polymer solar cells (PSCs) with a typical structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/copolymer:[6,6]-phenyl-C(61) (C(71))-butyric acid-methyl ester (PCBM)/calcium (Ca)/aluminum (Al) were fabricated and measured under the illumination of AM1.5G at 100 mW cm(-2). The results showed that the device based on the copolymer with phenyl-vinylene side chains had the highest efficiency of 2.17 % with PC(71)BM as acceptor. The results presented herein indicate that all the prepared copolymers are promising candidates for roll-to-roll manufacturing of efficient PSCs. Suitable electronic, optical and photovoltaic properties of BT-based copolymers can also be achieved by fine-tuning the structures of the aryl-vinylene side chains for photovoltaic application.

13.
ACS Appl Mater Interfaces ; 4(6): 3134-40, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22662875

ABSTRACT

We demonstrate the use of chemical-vapor-deposited (CVD) graphene as an effective indium-tin-oxide (ITO) electrode surface modifier to engineer the organic donor-acceptor heterojunction interface properties in an inverted organic solar cell device configuration. As revealed by in situ near-edge X-ray adsorption fine structure measurement, the organic donor-acceptor heterojunction, comprising copper-hexadecafluoro-phthalocyanine (F16CuPc) and copper phthalocyanine (CuPc), undergoes an obvious orientation transition from a standing configuration (molecular π-plane nearly perpendicular to the substrate surface) on the bare ITO electrode to a less standing configuration with the molecular π-plane stacking adopting a large projection along the direction perpendicular to the electrode surface on the CVD graphene-modified ITO electrode. Such templated less-standing configuration of the organic heterojunction could significantly enhance the efficiency of charge transport along the direction perpendicular to the electrode surface in the planar heterojunction-based devices. Compared with the typical standing organic-organic heterojunction on the bare ITO electrode, our in situ ultraviolet photoelectron spectroscopy experiments reveal that the heterojunction on the CVD graphene modified ITO electrode possesses better aligned energy levels with respective electrodes, hence facilitating effective charge collection.


Subject(s)
Graphite/chemistry , Electrodes , Indoles/chemistry , Organometallic Compounds/chemistry , Quantum Theory , Tin Compounds/chemistry
14.
Org Lett ; 14(11): 2786-9, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22578164

ABSTRACT

Incorporation of electron-deficient tetracyanoquinodimethane (TCNQ) into electron-rich thiophene-fused heptacene was successfully achieved for the purpose of stabilizing longer acenes and generating new n-type organic semiconductors. The heptacene-TCNQ derivative 1 was found to have good stability and an expected electron transporting property. Electron mobility up to 0.01 cm(2) V(-1) s(-1) has been obtained for this novel material in solution processed organic field effect transistors.

15.
Org Lett ; 14(12): 2964-7, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22630783

ABSTRACT

Stepwise cyanation of tetrabromonaphthalenediimide (NDI) 1 gave a series of cyanated NDIs 2-5 with the monocyanated NDI 2 and dicyanated NDI 3 isolated. The tri- and tetracyano- NDIs 4 and 5 show intrinsic instability toward moisture because of their extremely low-lying LUMO energy levels. The partially cyanated intermediates can be utilized as air-stable n-type semiconductors with OFET electron mobility up to 0.05 cm(2) V(-1) s(-1).

16.
Biomaterials ; 33(1): 237-46, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21963283

ABSTRACT

A bioinspired silification approach was successfully used to encapsulate fluorescent conjugated polymers inside silica-shell cross-linked polymeric micelles (CP-SSCL) in the highly benign synthesis environment of room temperature and near-neutral aqueous environment. Four different conjugated polymers were employed to demonstrate the versatility of the bioinspired silification, resulting in the formation of CP-SSCL with different emission wavelengths across the visible spectrum. The CP-SSCL are characterized by a large absorption coefficient and high quantum yield, indicating that they exhibit the required high fluorescence brightness for cellular imaging application. In addition, the CP-SSCL also exhibit a high colloidal stability and low cytotoxicity. The in vitro studies of using MDA-MB-231 breast cancer cells show that the CP-SSCL are successfully uptaken by the cancer cells and located at the cytoplasm of the cells. Furthermore, by conjugating folic acid on their surfaces, the uptake of CP-SSCL by MDA-MB-231 cells was enhanced significantly, suggesting their great potential for targeted imaging and early detection of cancer cells.


Subject(s)
Diagnostic Imaging/methods , Micelles , Polymers/chemistry , Silicon Dioxide/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Cell Line, Tumor , Humans , Polymers/metabolism
17.
Chem Commun (Camb) ; 47(33): 9480-2, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21785765

ABSTRACT

A random donor-acceptor semiconducting copolymer based on diketopyrrolopyrrole as the acceptor unit and dithienothiophene as the donor unit has been synthesized and characterized. Preliminary studies of BHJ solar cells based on this polymer with PC(71)BM showed a high PCE of above 5% under 100 mW cm(-2) AM1.5 solar illumination.

18.
Chemistry ; 17(24): 6696-706, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21542037

ABSTRACT

We describe here a facile and benign synthetic strategy to integrate the fluorescent behavior of conjugated polymers and superparamagnetic properties of iron oxide nanocrystals into silica nanocapsules, forming a new type of bifunctional magnetic fluorescent silica nanocapsule (BMFSN). The resultant BMFSNs are uniform, colloidally stable in aqueous medium, and exhibit the desired dual functionality of fluorescence and superparamagnetism in a single entity. Four conjugated polymers with different emissions were used to demonstrate the versatility of employing this class of fluorescent materials for the preparation of BMFSNs. The applicability of BMFSNs in cellular imaging was studied by incubating them with human liver cancer cells, the result of which demonstrated that the cells could be visualized by dual-mode fluorescence and magnetic resonance imaging. Furthermore, the superparamagnetic behavior of the BMFSNs was exploited for in vitro magnetic-guided delivery of the nanocapsules into the cancer cells, thereby highlighting their potential for targeting biomedical applications.


Subject(s)
Ferric Compounds/chemistry , Fluorescent Dyes/chemistry , Liver Neoplasms/chemistry , Liver Neoplasms/pathology , Nanocapsules/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Cell Line, Tumor , Fluorescence , Humans , Magnetic Resonance Imaging/methods , Nanocapsules/ultrastructure , Nanoparticles
20.
Chem Commun (Camb) ; 47(17): 4920-2, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21431130

ABSTRACT

Novel low band gap copolymers based on dithienosilole and thienopyrroledione units were synthesized. Copolymer P1 with branched side chains on the TPD units demonstrated a PCE of 4.4% with a high V(oc) of 0.89 V for OPV applications while OTFT devices fabricated from a copolymer containing linear side chains (P2) performed better in OTFT device configurations.

SELECTION OF CITATIONS
SEARCH DETAIL
...