Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer ; 22(1): 66, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37004067

ABSTRACT

BACKGROUND: Due to the lack of effective treatment, metastasis is the main cause of cancer related deaths. TGF-ß pathway has been reported related to cervical cancer metastasis. However, mechanism is still unclear. METHODS: After agonist of TGF-ß treatment, RNA sequencing revealed the expression profiles of circRNA in cervical cancer. In situ hybridization was used to analysis relationship between CDR1as and prognosis. Real-time PCR, Western blot, RNA interference, Transwell assay, Wound healing assay, RNA pulldown assay and RIP assays were performed in vitro. And in vivo cervical cancer model (including foot pad model and subcutaneous tumor formation) was also performed. RESULTS: CDR1as was found upregulated obviously following TGF-ß activation. In situ hybridization showed CDR1as was positively correlated with lymph node metastasis and shortened survival length. Simultaneously, overexpression of CDR1as promoted cervical cancer metastasis in vitro and in vivo. It was also found that CDR1as could facilitate the orchestration of IGF2BP1 on the mRNA of SLUG and stabilize it from degradation. Silencing IGF2BP1 hampers CDR1as related metastasis in cervical cancer. Additionally, effective CDR1as has been proven to activate TGF-ß signaling factors known to promote EMT, including P-Smad2 and P-Smad3. CONCLUSIONS: Our study proved TGF-ß signaling may promote cervical cancer metastasis via CDR1as.


Subject(s)
MicroRNAs , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , MicroRNAs/genetics , RNA Interference , Transforming Growth Factor beta/metabolism , RNA, Circular , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Cell Movement
2.
Cancer Cell Int ; 22(1): 165, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477450

ABSTRACT

BACKGROUND: Cervical cancer has ranked the top one in gynecological malignancies for incidence. Radioresistance is now becoming a leading reason of recurrence. METHODS: Our microRNA array data indicated that the miRNA-100 level decreased significantly during radioresistance. In this study, we up-regulated miR-100 in Hela and Siha cells by using miR-100 mimics and observed proliferation and invasion. RESULTS: It turned out that with overexpression of miR-100, the cells had less invasiveness as well as proliferation. It may target gene mTOR, and it deed reduced EMT. To examine the role of miR-100 in radioresistance, there was no significant result showed by BSP. While the circCASC15 has been identified with sponge function according to RNA pull down and ISH. CONCLUSION: The conclusions indicate miR-100 is a tumor suppressor gene and could be a therapeutic target in radio-resistant cervical cancers.

3.
Asian Pac J Cancer Prev ; 13(4): 1325-31, 2012.
Article in English | MEDLINE | ID: mdl-22799327

ABSTRACT

Tumor formation and growth is dictated by a very small number of tumor cells, called cancer stem cells, which are capable of self-renewal. The genesis of cancer stem cells and their resistance to conventional chemotherapy and radiotherapy via mechanisms such as multidrug resistance, quiescence, enhanced DNA repair abilities and anti-apoptotic mechanisms, make it imperative to develop methods to identify and use these cells as diagnostic or therapeutic targets. Aldehyde dehydrogenase 1 (ALDH1) is used as a cancer stem cell marker. In this study, we evaluated ALDH1 expression in CaSki, HeLa and SiHa cervical cancer cells using the Aldefluor method to isolate ALDH1-positive cells. We showed that higher ALDH1 expression correlated with significantly higher rates of cell proliferation, microsphere formation and migration. We also could demonstrate that SiHa-ALDH1- positive cells were significantly more tumorigenic compared to SiHa-ALDH1-negative cells. Similarly, SiHa cells overexpressing ALDH1 were significantly more tumorigenic and showed higher rates of cell proliferation and migration compared to SiHa cells where ALDH1 expression was knocked down using a lentivirus vector. Our data suggested that ALDH1 is a marker of cervical cancer stem cells and expand our understanding of its functional role.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma/enzymology , Isoenzymes/metabolism , Neoplastic Stem Cells/enzymology , Retinal Dehydrogenase/metabolism , Uterine Cervical Neoplasms/enzymology , Aldehyde Dehydrogenase 1 Family , Animals , Carcinoma/pathology , Cell Movement , Cell Proliferation , Female , HeLa Cells , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/pathology , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...