Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 129: 109904, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32559617

ABSTRACT

Long noncoding RNAs (LncRNAs) are involved in multiple processes of human malignancy, and emerge as crucial molecules in RNA biology. However, the function of lncRNAs has not been well illustrated in abdominal aortic aneurysm (AAA). In this research, the effects of dysregulated ladybird homeobox 2 antisense RNA 1 (LBX2-AS1) or ladybird homeobox 2 (LBX2) on vascular smooth muscle cell (VSMC) biological processes were surveyed via cell counting kit-8 (CCK-8), methyl thiazolyl tetrazolium (MTT), terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) and caspase-3 activity assays. LBX2-AS1 and LBX2 both possessed pro-apoptosis and anti-proliferation functions in AAA. Mechanically, the regulation role of LBX2-AS1 on miR-4685-5p or that of miR-4685-5p on LBX2 was investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the competing endogenous RNA (ceRNA) network was confirmed by luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. LBX2-AS1 sequestered miR-4685-5p to release LBX2 expression via ceRNA mechanism. Further, LBX2 could act as a transcriptional activator of LBX2-AS1. A positive feedback loop was formed by LBX2-AS1, miR-4685-5p and LBX2, deteriorating AAA formation and progression. To sum up, our data suggested that LBX2-AS1, miR-4685-5p and LBX2 constituted a positive feedback loop in promoting AAA development, implying a potential usage of LBX2-AS1/miR-4685-5p/LBX2 axis in AAA management.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Homeodomain Proteins/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , RNA, Long Noncoding/metabolism , Angiotensin II , Animals , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Apoptosis , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Disease Progression , Feedback, Physiological , Female , Gene Expression Regulation , Homeodomain Proteins/genetics , Humans , Mice , MicroRNAs/genetics , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , RNA, Long Noncoding/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...