Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1315: 342760, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38879206

ABSTRACT

Mycotoxins are commonly found in food materials and severely threaten human health. Antibodies play a key role as a part of immunological techniques in detecting mycotoxins. Therefore, highly specific antibodies and detection techniques against mycotoxins need to be developed for advancements in medical research. In this study, we presented a novel strategy for quickly screening highly specific antigen-binding fragment (Fab) antibodies based on yeast surface display (YSD) and detecting small-molecule compounds based on a YSD biosensor. We constructed a yeast surface display Deoxynivalenol (DON)-Fab library with 105 cfu/mL with a galactose-inducible bidirectional promoter. By conducting efficient magnetic-activated cell sorting and fluorescence-activated cell sorting (MACS/FACS), four kinds of DON-selective yeasts were screened. As Fab@YSD C4# showed high sensitivity, we used it to build a one-pot Fab@YSD chemiluminescence biosensor with DON-BSA@Biotin and Streptavidin-alkaline phosphatase (SA-ALP). This method showed a low operational threshold (LOD = 0.166 pg/mL) and a high population range (linear range = 0.001-132.111 ng/mL) within 40 min, which facilitated the detection of DON with high specificity and better recovery in real samples (wheat, corn, flour, and cornmeal). Our results suggested that the Fab@YSD chemiluminescence biosensor is an inexpensive, reproducible, user-friendly, and sensitive method for detecting DON and may be used to quickly detect other small-molecule contaminants in food items.


Subject(s)
Biosensing Techniques , Trichothecenes , Trichothecenes/analysis , Biosensing Techniques/methods , Saccharomyces cerevisiae , Food Contamination/analysis , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Limit of Detection , Triticum/chemistry , Triticum/microbiology , Zea mays/chemistry , Zea mays/microbiology , Flour/analysis
2.
Talanta ; 258: 124388, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36921368

ABSTRACT

Ochratoxin A (OTA) contamination seriously threatens food safety and human health and requires sensitive and rapid tools for monitoring. In this study, a convenient enzyme-linked immunosorbent assay based on Avi-labeled nanobody Nb-2G/streptavidin-alkaline phosphatase and magnetic beads (MBS-ELISA) was established for the sensitive detection of OTA, which could be used for one-pot detection without immobilization. After optimization, the 50% inhibitory concentration (IC50) and the lowest limit of detection value of the MBS-ELISA was 1.17 ng/mL and 0.07 ng/mL and the linear range was 248.8 pg/mL-5.28 ng/mL, respectively, which accords with state criteria for food safety. The developed one-step MBS-ELISA was almost 20-times more sensitive than the classic BA-ELISA and could generate results within 15 min, which was significantly less than the classic BA-ELISA at approximately 3 h. The MBS-ELISA indicated good recovery (86.4-114.3%) in spiked sorghum, buckwheat, and mung bean. Thus, MBS-ELISA represents a very promising strategy for the simple, rapid, and accurate detection of OTA and other toxic and hazardous contaminants.


Subject(s)
Luminescence , Ochratoxins , Humans , Limit of Detection , Streptavidin , Enzyme-Linked Immunosorbent Assay/methods , Ochratoxins/analysis , Immunoassay
3.
Biosens Bioelectron ; 209: 114185, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35429773

ABSTRACT

The overuse of antibiotics has aroused widespread concern in recent decades. Their residues in food and environment may pose potential risks to human health. Therefore, highly sensitive and rapid detection methods of antibiotics are urgently needed. Inspired by allosteric transcription factors (aTFs), we proposed a novel strategy for small molecules detection based on antibody controlled isothermal chain displacement amplification (ACISDA). A combination of nicking endonuclease, Klenow Fragment polymerase, specific antibody and a pair of antigen-labeled DNA regulate the synthesis of a G-quadruplex by isothermal chain displacement amplification. The presence of a target induces the antibody dissociation from the antigen-labeled DNA, which induces the synthesis of a G-quadruplex, and a fluorescent signal is produced by thioflavine T (ThT) binding to G-quadruplex. To test this notion, norfloxacin-conjugated DNA (named Primer-NOR) was prepared and ACISDA system was established combining with anti-norfloxacin antibody. This system could detect norfloxacin in a linear range of 0.1 ∼ 500 ng/mL with detection limit of 0.04 ng/mL, and this system could be applied to the detection of norfloxacin in real samples with good performance. Meanwhile, this system could also realize washing-free, immobilization-free and "ready-to-use", and could be used for other small molecules quickly by replacing the antigen-labeled DNA and specific antibody.


Subject(s)
Biosensing Techniques , G-Quadruplexes , Anti-Bacterial Agents , Biosensing Techniques/methods , DNA/genetics , Humans , Limit of Detection , Norfloxacin , Nucleic Acid Amplification Techniques/methods
4.
Mikrochim Acta ; 189(4): 153, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322310

ABSTRACT

A method is described to achieve accurate quantitative detection of atrazine (ATZ) in maize by using lateral flow strips based on gold nanoparticles (GNPs) and a handheld scanning reader. GNPs of 15 nm in diameter were applied as label, and a lateral flow immune assay strip was prepared. The linear range was 5.01-95.86 ng mL-1 with a detection limit of 4.92 ng mL-1 in phosphate buffer, 4 times better than the readout by the naked eye. ATZ-spiked corn samples were also analysed. The accuracy of results of spiked samples was confirmed by ELISA and liquid chromatography-tandem mass spectrometry (HPLC), which proved the reliability of the proposed method. A handhold device with an optical scanning system was designed for on-site quantitative detection. Combined with the pretreatment, the assay could be completed in less than 20 min.


Subject(s)
Atrazine , Metal Nanoparticles , Atrazine/analysis , Gold/chemistry , Immunoassay/methods , Metal Nanoparticles/chemistry , Point-of-Care Systems , Reproducibility of Results
5.
Talanta ; 234: 122703, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34364497

ABSTRACT

A dual-readout immunoassay based on QDs-FM@ALP-SA and click chemistry was developed for quick and sensitive detection of norfloxacin (NOR), which is an important fluoroquinolone antibiotic. In the system, the NOR-biotin conjugate (NOR-Biotin) was synthesized by click chemistry for signal transformation, and alkaline phosphatase-labeled streptavidin (ALP-SA) was attached to quantum dot fluorescence microspheres (QDs-FM) by an activated ester method to form QDs-FM@ALP-SA for signal amplification. Here, QDs-FM was a dual-functional carrier: it was used not only as a chemiluminescence signal amplification carrier but also as a fluorescent signal due to its fluorescence character. The NOR antibody was coated on a 96-well chemiluminescence microtiter plate, and NOR-Biotin was bound to the antibody specifically. Then, QDs-FM@ALP-SA was combined with NOR-Biotin to develop a direct competition chemiluminescence/fluorescence immunoassay (dc-CLIA/FIA). The IC50 values were 0.345 and 1.206 ng/mL for dc-CLIA/FIA, respectively. The linear range was 0.013-12.48 ng/mL and 0.042-39.86 ng/mL, respectively. The recovery from the standard fortified blank milk samples was in the range of 86.44%-101.3%. Therefore, this method could be a useful tool for routine screening of NOR residues in milk.


Subject(s)
Quantum Dots , Alkaline Phosphatase , Animals , Click Chemistry , Immunoassay , Limit of Detection , Microspheres , Milk , Norfloxacin , Streptavidin
SELECTION OF CITATIONS
SEARCH DETAIL
...