Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(12)2023 12 07.
Article in English | MEDLINE | ID: mdl-38137008

ABSTRACT

The accumulation of arsenic (As) in rice poses a significant threat to food safety and human health. Breeding rice varieties with low As accumulation is an effective strategy for mitigating the health risks associated with arsenic-contaminated rice. However, the genetic mechanisms underlying As accumulation in rice grains remain incompletely understood. We evaluated the As accumulation capacity of 313 diverse rice accessions grown in As-contaminated soils with varying As concentrations. Six rice lines with low As accumulation were identified. Additionally, a genome-wide association studies (GWAS) analysis identified 5 QTLs significantly associated with As accumulation, with qAs4 being detected in both of the experimental years. Expression analysis demonstrated that the expression of LOC_Os04g50680, which encodes an MYB transcription factor, was up-regulated in the low-As-accumulation accessions compared to the high-As-accumulation accessions after As treatment. Therefore, LOC_Os04g50680 was selected as a candidate gene for qAs4. These findings provide insights for exploiting new functional genes associated with As accumulation and facilitating the development of low-As-accumulation rice varieties through marker-assisted breeding.


Subject(s)
Arsenic , Oryza , Humans , Genome-Wide Association Study , Arsenic/toxicity , Arsenic/metabolism , Plant Breeding , Quantitative Trait Loci/genetics
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 257: 119700, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33872949

ABSTRACT

Fast determination of heavy metals is necessary and important to ensure the safety of crops. The potential of near-infrared spectroscopy coupled with chemometric technology for quantitative analysis of cadmium in rice was investigated. A total of 825 rice samples were collected and scanned by NIRS. The Kennard-Stone method was applied to divide the samples into calibration and validation sets. Before modeling, the spectrum was preprocessed using first derivation to reduce the baseline shift. Different chemometric tools such as interval partial least squares, moving window partial least squares, synergy interval partial least squares, and backward interval partial least squares were proposed to extract and optimize spectral interval from full-spectrum data. The performance of the calibration models generated on the basis of different regression algorithms was compared and evaluated. Results showed that the PLS models based on four chemometric algorithms outperformed the full-spectrum PLS model. Among the tools, biPLS performed better with the optimal subinterval selection. The root-mean-square error of prediction and correlation coefficient (R) of the biPLS model were 0.2133 and 0.9020, respectively. In addition, the low root-mean-square error of cross-validation was obtained in biPLS, which was 0.1756. NIRS technology combined with biPLS could be considered as an effective and convenient tool for primary screening and measuring of cadmium content in rice. In comparison with classical methodologies, this new technology was beneficial because of its eco-friendliness, fast analysis, and virtually no sample preparation required.


Subject(s)
Oryza , Spectroscopy, Near-Infrared , Algorithms , Cadmium , Calibration , Least-Squares Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...