Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.910
Filter
1.
Semin Liver Dis ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955211

ABSTRACT

The liver has the great ability to regenerate after partial resection or injury, and the mechanisms underlying liver regeneration have been extensively investigated. Interestingly, acute liver injuries triggered by various etiologies are associated with the formation of necrotic lesions, and such necrotic lesions are also rapidly resolved. However, how necrotic liver lesions are repaired has not been carefully investigated until recently. In this review, we briefly summarize the spatiotemporal process of necrotic liver lesion resolution in several liver injury models including immune-mediated liver injury and drug-induced liver injury. The roles of liver non-parenchymal cells and infiltrating immune cells in controlling necrotic liver lesion resolution are discussed, which may help identify potential therapies for acute liver injury and failure.

2.
J Org Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950197

ABSTRACT

Electron-rich diarylamines, exemplified by anisole-derived amines, play pivotal roles in process chemistry, pharmaceuticals, and materials. In this study, homo-diarylamines were synthesized directly from the C-H activation of electron-rich arenes by sodium nitrate/trifluoroacetic acid and the successive treatment of iron powder. Mechanistic investigations reveal that nitrosoarene serves as the reaction intermediate, and the formation of the second C-N bond between the resulting nitrosoarene and electron-rich arene is catalyzed by the nitrosonium ion (NO+). Thus, hetero-diarylamines were synthesized using preformed nitrosoarenes and various electron-rich arenes. This reaction complements a range of cross-coupling reactions catalyzed by transition metal catalysts.

3.
Mar Pollut Bull ; 205: 116658, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964192

ABSTRACT

Offshore coastal marine ranching ecosystems provide habitat for diverse and active bacterial communities. In this study, 16S rRNA gene sequencing and multiple bioinformatics methods were applied to investigate assembly dynamics and relationships in different habitats. The higher number of edges in the water network, more balanced ratio of positive and negative links, and more keystone species included in the co-occurrence network of water. Stochastic processes dominated in shaping gut and sediment community assembly (R2 < 0.5), while water bacterial community assembly were dominated by deterministic processes (R2 > 0.5). Dissimilarity-overlap curve model indicated that the communities in different habitats have general dynamics and interspecific interaction (P < 0.001). Bacterial source-tracking analysis revealed that the gut was more similar to the sediment than the water bacterial communities. In summary, this study provides basic data for the ecological study of marine ranching through the study of bacterial community dynamics.

4.
JAMA Netw Open ; 7(7): e2419771, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954412

ABSTRACT

Importance: Current research in epigenetic age acceleration (EAA) is limited to non-Hispanic White individuals. It is imperative to improve inclusivity by considering racial and ethnic minorities in EAA research. Objective: To compare non-Hispanic Black with non-Hispanic White survivors of childhood cancer by examining the associations of EAA with cancer treatment exposures, potential racial and ethnic disparity in EAA, and mediating roles of social determinants of health (SDOH). Design, Setting, and Participants: In this cross-sectional study, participants were from the St Jude Lifetime Cohort, which was initiated in 2007 with ongoing follow-up. Eligible participants included non-Hispanic Black and non-Hispanic White survivors of childhood cancer treated at St Jude Children's Research Hospital between 1962 and 2012 who had DNA methylation data. Data analysis was conducted from February 2023 to May 2024. Exposure: Three treatment exposures for childhood cancer (chest radiotherapy, alkylating agents, and epipodophyllotoxin). Main Outcomes and Measures: DNA methylation was generated from peripheral blood mononuclear cell-derived DNA. EAA was calculated as residuals from regressing Levine or Horvath epigenetic age on chronological age. SDOH included educational attainment, annual personal income, and the socioeconomic area deprivation index (ADI). General linear models evaluated cross-sectional associations of EAA with race and ethnicity (non-Hispanic Black and non-Hispanic White) and/or SDOH, adjusting for sex, body mass index, smoking, and cancer treatments. Adjusted least square means (ALSM) of EAA were calculated for group comparisons. Mediation analysis treated SDOH as mediators with average causal mediation effect (ACME) calculated for the association of EAA with race and ethnicity. Results: Among a total of 1706 survivors including 230 non-Hispanic Black survivors (median [IQR] age at diagnosis, 9.5 [4.3-14.3] years; 103 male [44.8%] and 127 female [55.2%]) and 1476 non-Hispanic White survivors (median [IQR] age at diagnosis, 9.3 [3.9-14.6] years; 766 male [51.9%] and 710 female [48.1%]), EAA was significantly greater among non-Hispanic Black survivors (ALSM = 1.41; 95% CI, 0.66 to 2.16) than non-Hispanic White survivors (ALSM = 0.47; 95% CI, 0.12 to 0.81). Among non-Hispanic Black survivors, EAA was significantly increased among those exposed to chest radiotherapy (ALSM = 2.82; 95% CI, 1.37 to 4.26) vs those unexposed (ALSM = 0.46; 95% CI, -0.60 to 1.51), among those exposed to alkylating agents (ALSM = 2.33; 95% CI, 1.21 to 3.45) vs those unexposed (ALSM = 0.95; 95% CI, -0.38 to 2.27), and among those exposed to epipodophyllotoxins (ALSM = 2.83; 95% CI, 1.27 to 4.40) vs those unexposed (ALSM = 0.44; 95% CI, -0.52 to 1.40). The association of EAA with epipodophyllotoxins differed by race and ethnicity (ß for non-Hispanic Black survivors, 2.39 years; 95% CI, 0.74 to 4.04 years; ß for non-Hispanic White survivors, 0.68; 95% CI, 0.05 to 1.31 years) and the difference was significant (1.77 years; 95% CI, 0.01 to 3.53 years; P for interaction = .049). Racial and ethnic disparities in EAA were mediated by educational attainment (

Subject(s)
Cancer Survivors , Epigenesis, Genetic , Socioeconomic Factors , Humans , Female , Male , Cross-Sectional Studies , Cancer Survivors/statistics & numerical data , Child , Neoplasms/genetics , Neoplasms/ethnology , Adolescent , White People/statistics & numerical data , White People/genetics , Black or African American/statistics & numerical data , Black or African American/genetics , DNA Methylation , Adult , Ethnicity/statistics & numerical data , Social Determinants of Health/statistics & numerical data
5.
Sci Rep ; 14(1): 15056, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38956075

ABSTRACT

Celiac Disease (CD) is a primary malabsorption syndrome resulting from the interplay of genetic, immune, and dietary factors. CD negatively impacts daily activities and may lead to conditions such as osteoporosis, malignancies in the small intestine, ulcerative jejunitis, and enteritis, ultimately causing severe malnutrition. Therefore, an effective and rapid differentiation between healthy individuals and those with celiac disease is crucial for early diagnosis and treatment. This study utilizes Raman spectroscopy combined with deep learning models to achieve a non-invasive, rapid, and accurate diagnostic method for celiac disease and healthy controls. A total of 59 plasma samples, comprising 29 celiac disease cases and 30 healthy controls, were collected for experimental purposes. Convolutional Neural Network (CNN), Multi-Scale Convolutional Neural Network (MCNN), Residual Network (ResNet), and Deep Residual Shrinkage Network (DRSN) classification models were employed. The accuracy rates for these models were found to be 86.67%, 90.76%, 86.67% and 95.00%, respectively. Comparative validation results revealed that the DRSN model exhibited the best performance, with an AUC value and accuracy of 97.60% and 95%, respectively. This confirms the superiority of Raman spectroscopy combined with deep learning in the diagnosis of celiac disease.


Subject(s)
Celiac Disease , Deep Learning , Spectrum Analysis, Raman , Celiac Disease/diagnosis , Celiac Disease/blood , Humans , Spectrum Analysis, Raman/methods , Female , Male , Adult , Neural Networks, Computer , Case-Control Studies , Middle Aged
6.
Microbiol Resour Announc ; : e0035424, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967472

ABSTRACT

Penicillium citrinum strain B9 is a plant growth-promoting fungus isolated from Barley (Hordeum vulgare) rhizosphere. We report the first draft genome of P. citrinum B9 assembled using single-molecule real-time sequencing and Illumina reads. The assembled genome spans 31.3 Mb comprising nine contigs and 10,106 protein-encoding genes.

7.
Article in English | MEDLINE | ID: mdl-38972903

ABSTRACT

INTRODUCTION: The choice between simultaneous and staged bilateral total knee arthroplasty (BTKA) remains controversial. Age-adjusted Charlson Comorbidity Index(CCI) is a promising tool for risk-stratification. We aimed to compare the outcomes between patients who underwent simultaneous and staged BTKA, stratified by age-adjusted CCI scores. MATERIALS AND METHODS: We conducted this retrospective, single-surgeon case series from 2010 to 2020. This study consisted of 1558 simultaneous BTKA and 786 staged BTKA procedures. The outcome domains included 30-day and 90-day readmission and 1-year reoperation events. We performed multivariate regression analysis to compare the risk of readmission and reoperation following simultaneous and staged BTKA. Other factors included age, sex, body mass index, diabetes mellitus, rheumatoid arthritis, smoking, receiving thromboprophylaxis and blood transfusion. RESULTS: The rates of 30-day, 90-day readmission and 1-year reoperation following simultaneous BTKA was 1.99%, 2.70% and 0.71%, respectively. The rates of 30-day, 90-day readmission and 1-year reoperation following staged BTKA was 0.89%, 1.78% and 0.89%, respectively. For patients with age-adjusted CCI ≥ 4 points, simultaneous BTKA was associated with a higher risk of 30-day (aOR:3.369, 95% CI:0.990-11.466) and 90-day readmission (aOR:2.310, 95% CI:0.942-5.668). In patients with age-adjusted CCI ≤ 3 points, the risk of readmission and reoperation was not different between simultaneous or staged BTKA. CONCLUSION: Simultaneous BTKA was associated with an increased risk of short-term readmissions in patients with age-adjusted CCI ≥ 4 points but not in those with age-adjusted CCI ≤ 3 points. Age-adjusted CCI can be an effective index for the choice between simultaneous and staged BTKA procedures.

8.
J Phys Chem Lett ; : 7214-7220, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973732

ABSTRACT

The oxidation of Sn2+ can occur even after the completion of the perovskite crystallization in a low oxygen environment. Concerning this, the natural antioxidant vitamin C (VC) is introduced to the surface of Sn-Pb mixed perovskite using a postprocessing method to achieve the purpose of inhibiting Sn2+ oxidation and enhancing perovskite solar cells performance. The results indicate that the VC could effectively inhibit Sn2+ oxidation and heal the vacancy defects of the annealed perovskite film. Meanwhile, the introduction of VC significantly improves the morphology and crystalline quality of the perovskite films. After optimization, the highest power conversion efficiency of the VC-treated Sn-Pb mixed device increased to 20.44%. Moreover, the VC-treated unencapsulated device shows excellent long-term stability, retaining 75.3% of its initial efficiency after 800 h of aging in a N2 atmosphere, which is much higher than the 20.1% of the control device.

9.
Article in English | MEDLINE | ID: mdl-38951125

ABSTRACT

Nurses are the frontline professionals caring for patients who have attempted suicide. When clinical nurses learn from medical records or nursing handover, or are proactively informed by patients or family members, that the patients they are caring for have suicidal tendencies, they often experience pressure and face challenges. However, little attention has been given to the experiences of the nurses caring for patients with suicidal intent on medical and surgical wards. We aimed to address this knowledge gap. The purpose of this study was to explore medical and surgical nurses' experiences, especially the internal conflicts they might experience while caring for patients who have a history of attempted suicide. A qualitative descriptive design and semi-structured interviews were used in this study. Twenty-three nurses were recruited and interviewed individually. Data were analysed by qualitative content analysis. The focus of this paper is to examine the emergent theme of intrapersonal conflict experienced by the participants. Nurses' experiences can be clustered into two themes: (1) Pity and annoyance and (2) Hard work does not necessarily pay off. Intrapersonal conflict was identified by participants as considerable fear and anxiety about the possibility of a patient's suicide, as well as a mixture of pity for and annoyance with the patients. Nurses feel sorry for such patients, but they are also annoyed by the extra work required to prevent suicide attempts in the ward. Additionally, having limited time and ability, they see that their hard work does not necessarily pay off and may sometimes lead to punishment. Our findings raise serious concerns about the adequacy of the knowledge of the nurses, their competence and their difficulties in caring for such patients. In addition, there is a need to provide them with appropriate on-the-job education and immediate emotional support relevant to caring for survivors of suicide attempts.

10.
Int Immunopharmacol ; 138: 112547, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943969

ABSTRACT

Non-small cell lung cancer (NSCLC) accounts for more than 80% of lung cancer cases, and the 5-year survival rate of patients remains unsatisfactory. MicroRNAs (miRNAs) are small endogenous noncoding RNAs that are considered essential posttranscriptional regulators of tumorigenesis, including NSCLC. In this study, we aimed to investigate the biological role of miR-3074-5p in NSCLC cells and the underlying molecular mechanisms. We showed that miR-3074-5p expression was decreased in human NSCLC specimens and cell lines. Moreover, miR-3074-5p overexpression inhibited cell proliferation, migration and invasion and induced apoptosis and cell cycle arrest. In addition, miR-3074-5p overexpression not only suppressed tumor growth but also enhanced the antitumor effect of paclitaxel (PTX) on NSCLC cells in vitro and in vivo. A transcriptome sequencing assay revealed genes that were differentially expressed after miR-3074-5p overexpression, and among the genes whose expression levels were most significantly decreased, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) was a target of miR-3074-5p. The regulatory effect of miR-3074-5p on YWHAZ expression was verified by Western blotting and dual-luciferase reporter assays. The inhibition of A549 cell growth, migration and invasion was reversed by YWHAZ overexpression. Furthermore, we showed that PTX stimulated the expression of the YWHAZ and Hsp27 proteins and promoted the phosphorylation of Hsp27 (at S15 and S78). YWHAZ was confirmed to interact with Hsp27 in A549 cells, and downregulating YWHAZ expression promoted the degradation of the Hsp27 protein. Taken together, these results suggest that the miR-3074-5p/YWHAZ/Hsp27 axis may be a novel therapeutic target for NSCLC treatment.

11.
Front Immunol ; 15: 1418061, 2024.
Article in English | MEDLINE | ID: mdl-38903499

ABSTRACT

Extracellular vesicles (EVs), characterized by low immunogenicity, high biocompatibility and targeting specificity along with excellent blood-brain barrier permeability, are increasingly recognized as promising drug delivery vehicles for treating a variety of diseases, such as cancer, inflammation and viral infection. However, recent findings demonstrate that the intracellular delivery efficiency of EVs fall short of expectations due to phagocytic clearance mediated by the host mononuclear phagocyte system through Fcγ receptors, complement receptors as well as non-opsonic phagocytic receptors. In this text, we investigate a range of bacterial virulence proteins that antagonize host phagocytic machinery, aiming to explore their potential in engineering EVs to counteract phagocytosis. Special emphasis is placed on IdeS secreted by Group A Streptococcus and ImpA secreted by Pseudomonas aeruginosa, as they not only counteract phagocytosis but also bind to highly upregulated surface biomarkers αVß3 on cancer cells or cleave the tumor growth and metastasis-promoting factor CD44, respectively. This suggests that bacterial anti-phagocytic proteins, after decorated onto EVs using pre-loading or post-loading strategies, can not only improve EV-based drug delivery efficiency by evading host phagocytosis and thus achieve better therapeutic outcomes but also further enable an innovative synergistic EV-based cancer therapy approach by integrating both phagocytosis antagonism and cancer targeting or deactivation.


Subject(s)
Extracellular Vesicles , Phagocytosis , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Phagocytosis/immunology , Humans , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/immunology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/immunology , Pseudomonas aeruginosa/immunology
12.
Magn Reson Imaging ; 112: 47-53, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909765

ABSTRACT

INTRODUCTION: Although ischemia-reperfusion (I/R) injury varies between cortical and subcortical regions, its effects on specific regions remain unclear. In this study, we used various magnetic resonance imaging (MRI) techniques to examine the spatiotemporal dynamics of I/R injury within the salvaged ischemic penumbra (IP) and reperfused ischemic core (IC) of a rodent model, with the aim of enhancing therapeutic strategies by elucidating these dynamics. MATERIALS AND METHODS: A total of 17 Sprague-Dawley rats were subjected to 1 h of transient middle cerebral artery occlusion with a suture model. MRI, including diffusion tensor imaging (DTI), T2-weighted imaging, perfusion-weighted imaging, and T1 mapping, was conducted at multiple time points for up to 5 days during the I/R phases. The spatiotemporal dynamics of blood-brain barrier (BBB) modifications were characterized through changes in T1 within the IP and IC regions and compared with mean diffusivity (MD), T2, and cerebral blood flow. RESULTS: During the I/R phases, the MD of the IC initially decreased, normalized after recanalization, decreased again at 24 h, and peaked on day 5. By contrast, the IP remained relatively stable. Both the IP and IC exhibited hyperperfusion, with the IP reaching its peak at 24 h, followed by resolution, whereas hyperperfusion was maintained in the IC until day 5. Despite hyperperfusion, the IP maintained an intact BBB, whereas the IC experienced persistent BBB leakage. At 24 h, the IC exhibited an increase in the T2 signal, corresponding to regions exhibiting BBB disruption at 5 days. CONCLUSIONS: Hyperperfusion and BBB impairment have distinct patterns in the IP and IC. Quantitative T1 mapping may serve as a supplementary tool for the early detection of malignant hyperemia accompanied by BBB leakage, aiding in precise interventions after recanalization. These findings underscore the value of MRI markers in monitoring ischemia-specific regions and customizing therapeutic strategies to improve patient outcomes.

13.
Photodiagnosis Photodyn Ther ; 48: 104243, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38862086

ABSTRACT

Modern medical understanding suggests that hyperproliferative skin diseases (HSDs) are complex syndromes characterized by localized hypertrophy or hyperplasia and infiltration of inflammatory cells. Various treatments, including systemic and topical pharmacotherapy, laser interventions, photodynamic therapy, and surgery, have been proposed for managing HSDs. However, challenges such as wound healing and recurrence after laser treatment have hindered the effectiveness of laser therapy. To overcome these challenges, we conducted a study combining laser therapy with cold atmospheric plasma (CAP) for the treatment of HSDs. Seven patients with different forms of HSDs, who had not responded well to conventional treatments, were enrolled in the study. These HSDs included cases of erythroplasia of Queyrat, pyoderma gangrenosum, keloids and hypertrophic scars, cellulitis, cutaneous lichen planus, and verruca vulgaris. Laser therapy was performed to remove the hyperplastic skin lesions, followed immediately by daily CAP treatment. The results were promising, with all patients successfully treated and no recurrence observed during the follow-up periods. The combined application of CAP and laser therapy proved to be an effective and complementary strategy for managing HSDs. This innovative approach provide evidence for addressing the limitation of laser therapy by utilizing CAP to promote wound healing and mitigate inflammatory responses. Chinese Clinical Trial Registry (ChiCTR2300069993).

14.
Mol Breed ; 44(7): 45, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38911334

ABSTRACT

The brown planthopper (Nilaparvata lugens Stål, BPH) is the most destructive pest of rice (Oryza sativa L.). Utilizing resistant rice cultivars that harbor resistance gene/s is an effective strategy for integrated pest management. Due to the co-evolution of BPH and rice, a single resistance gene may fail because of changes in the virulent BPH population. Thus, it is urgent to explore and map novel BPH resistance genes in rice germplasm. Previously, an indica landrace from India, Paedai kalibungga (PK), demonstrated high resistance to BPH in both in Wuhan and Fuzhou, China. To map BPH resistance genes from PK, a BC1F2:3 population derived from crosses of PK and a susceptible parent, Zhenshan 97 (ZS97), was developed and evaluated for BPH resistance. A novel BPH resistance locus, BPH39, was mapped on the short arm of rice chromosome 6 using next-generation sequencing-based bulked segregant analysis (BSA-seq). BPH39 was validated using flanking markers within the locus. Furthermore, near-isogenic lines carrying BPH39 (NIL-BPH39) were developed in the ZS97 background. NIL-BPH39 exhibited the physiological mechanisms of antibiosis and preference toward BPH. BPH39 was finally delimited to an interval of 84 Kb ranging from 1.07 to 1.15 Mb. Six candidate genes were identified in this region. Two of them (LOC_Os06g02930 and LOC_Os06g03030) encode proteins with a similar short consensus repeat (SCR) domain, which displayed many variations leading to amino acid substitutions and showed higher expression levels in NIL-BPH39. Thus, these two genes are considered reliable candidate genes for BPH39. Additionally, transcriptome sequencing, DEGs analysis, and gene RT-qPCR verification preliminary revealed that BPH39 may be involved in the jasmonic acid (JA) signaling pathway, thus mediating the molecular mechanism of BPH resistance. This work will facilitate map-based cloning and marker-assisted selection for the locus in breeding programs targeting BPH resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01485-6.

15.
Clin Infect Dis ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913750

ABSTRACT

BACKGROUND: The management of multidrug-resistant tuberculosis (MDR-TB) remains challenging. Treatment outcome is influenced by multiple factors, the specific roles of diabetes and glycemic control remain uncertain. This study aims to assess the impact of glycemic control on drug exposure, to investigate the association between drug exposure and treatment outcomes, and to identify clinically-significant thresholds predictive of treatment outcome, among patients with diabetes. METHODS: This multicenter prospective cohort study involved patients with confirmed MDR-TB and diabetes. Drug exposure level was estimated by noncompartmental analysis. The minimum inhibitory concentrations were determined for the individual Mycobacterium tuberculosis isolates. The influence of poor glycemic control (hemoglobin A1c ≥ 7%) on drug exposure and the associations between drug exposure and treatment outcome were evaluated by univariate and multivariate analysis. Classification and regression tree analysis was used to identify the drug exposure/susceptibility thresholds. RESULTS: Among the 131 diabetic participants, 43 (32.8%) exhibited poor glycemic control. Poor glycemic control was independently associated with decreased exposure to moxifloxacin, linezolid, bedaquiline, and cycloserine, but not clofazimine. Additionally, a higher ratio of drug exposure to susceptibility was found to be associated with a favorable MDR-TB treatment outcome. Thresholds predictive of 6-month culture conversion and favorable outcome were bedaquiline AUC/MIC ≥ 245 and moxifloxacin AUC/MIC ≥ 67, demonstrating predictive accuracy in patients, regardless of their glycemic control status. CONCLUSIONS: Glycemic control and optimal TB drug exposure are associated with improved treatment outcomes. This dual management strategy should be further validated in randomized controlled trials of patients with MDR-TB and diabetes.

16.
mBio ; : e0114424, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916345

ABSTRACT

The cAMP receptor proteins (CRPs) play a critical role in bacterial environmental adaptation by regulating global gene expression levels via cAMP binding. Here, we report the structure of DdrI, a CRP family protein from Deinococcus radiodurans. Combined with biochemical, kinetic, and molecular dynamics simulations analyses, our results indicate that DdrI adopts a DNA-binding conformation in the absence of cAMP and can form stable complexes with the target DNA sequence of classical CRPs. Further analysis revealed that the high-affinity cAMP binding pocket of DdrI is partially filled with Tyr113-Arg55-Glu65 sidechains, mimicking the anti-cAMP-mediated allosteric transition. Moreover, the second syn-cAMP binding site of DdrI at the protein-DNA interface is more negatively charged compared to that of classical CRPs, and manganese ions can enhance its DNA binding affinity. DdrI can also bind to a target sequence that mimics another transcription factor, DdrO, suggesting potential cross-talk between these two transcription factors. These findings reveal a class of CRPs that are independent of cAMP activation and provide valuable insights into the environmental adaptation mechanisms of D. radiodurans.IMPORTANCEBacteria need to respond to environmental changes at the gene transcriptional level, which is critical for their evolution, virulence, and industrial applications. The cAMP receptor protein (CRP) of Escherichia coli (ecCRP) senses changes in intracellular cAMP levels and is a classic example of allosteric effects in textbooks. However, the structures and biochemical activities of CRPs are not generally conserved and there exist different mechanisms. In this study, we found that the proposed CRP from Deinococcus radiodurans, DdrI, exhibited DNA binding ability independent of cAMP binding and adopted an apo structure resembling the activated CRP. Manganese can enhance the DNA binding of DdrI while allowing some degree of freedom for its target sequence. These results suggest that CRPs can evolve to become a class of cAMP-independent global regulators, enabling bacteria to adapt to different environments according to their characteristics. The first-discovered CRP family member, ecCRP (or CAP) may well not be typical of the family and be very different to the ancestral CRP-family transcription factor.

17.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38916488

ABSTRACT

Nest building is a vital behavior exhibited during breeding in birds, and is possibly induced by environmental and social cues. Although such behavioral plasticity has been hypothesized to be controlled by adult neuronal plasticity, empirical evidence, especially at the neurogenomic level, remains limited. Here, we aim to uncover the gene regulatory networks that govern avian nest construction and examine whether they are associated with circuit rewiring. We designed an experiment to dissect this complex behavior into components in response to pair bonding and nest material acquisition by manipulating the presence of mates and nest materials in 30 pairs of zebra finches. Whole-transcriptome analysis of 300 samples from five brain regions linked to avian nesting behaviors revealed nesting-associated gene expression enriched with neural rewiring functions, including neurogenesis and neuron projection. The enriched expression was observed in the motor/sensorimotor and social behavior networks of female finches, and in the dopaminergic reward system of males. Female birds exhibited predominant neurotranscriptomic changes to initiate the nesting stage, while males showed major changes after entering this stage, underscoring sex-specific roles in nesting behavior. Notably, major neurotranscriptomic changes occurred during pair bonding, with minor changes during nest material acquisition, emphasizing social interactions in nest construction. We also revealed gene expression associated with reproductive behaviors and tactile sensing for nesting behavior. This study presents novel neurogenomic evidence supporting the hypothesis of adult neural plasticity underlying avian nest-construction behavior. By uncovering the genetic toolkits involved, we offer novel insights into the evolution of animals' innate ability to construct nests.


Subject(s)
Brain , Finches , Gene Regulatory Networks , Nesting Behavior , Animals , Finches/genetics , Finches/physiology , Brain/metabolism , Brain/physiology , Female , Male , Social Behavior , Transcriptome
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124581, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38850829

ABSTRACT

Computer-aided vibrational spectroscopy detection technology has achieved promising results in the field of early disease diagnosis. Yet limited by factors such as the number of actual samples and the cost of spectral acquisition in clinical medicine, the data available for model training are insufficient, and the amount of data varies greatly between different diseases, which constrain the performance optimization and enhancement of the diagnostic model. In this study, vibrational spectroscopy data of three common diseases are selected as research objects, and experimental research is conducted around the class imbalance situation that exists in medical data. When dealing with the challenge of class imbalance in medical vibrational spectroscopy research, it no longer relies on some kind of independent and single method, but considers the combined effect of multiple strategies. SVM, K-Nearest Neighbor (KNN), and Decision Tree (DT) are used as baseline comparison models on Raman spectroscopy medical datasets with different imbalance rates. The performance of the three strategies, Ensemble Learning, Feature Extraction, and Resampling, is verified on the class imbalance dataset by G-mean and AUC metrics, respectively. The results show that all the above three methods mitigate the negative impact caused by unbalanced learning. Based on this, we propose a hybrid ensemble classifier (HEC) that integrates resampling, feature extraction, and ensemble learning to verify the effectiveness of the hybrid learning strategy in solving the class imbalance problem. The G-mean and AUC values of the HEC method are 82.7 % and 83.12 % for the HBV dataset, is 2.02 % and 1.98 % higher than the optimal strategy; 83.62 % and 83.76 % for the HCV dataset, is 9.79 % and 8.47 % higher than the optimal strategy; while for the thyroid dysfunction dataset are 77.56 % and 77.85 %, is 6.92 % and 6.36 % higher than that of the optimal strategy, respectively. The experimental results show that the G-mean and AUC metrics of the HEC method are higher than those of the baseline classifier as well as the optimal combination using separate strategies. It can be seen that the HEC method can effectively counteract the unfavorable effects of imbalance learning and is expected to be applied to a wider range of imbalance scenarios.


Subject(s)
Hepatitis A , Hepatitis B , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Humans , Hepatitis B/diagnosis , Hepatitis B/blood , Hepatitis A/diagnosis , Hepatitis A/blood , Thyroid Diseases/diagnosis , Thyroid Diseases/blood , Support Vector Machine , Algorithms , Machine Learning , Decision Trees
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124592, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38861826

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple symptoms, and its rapid screening is the research focus of surface-enhanced Raman scattering (SERS) technology. In this study, gold@silver-porous silicon (Au@Ag-PSi) composite substrates were synthesized by electrochemical etching and in-situ reduction methods, which showed excellent sensitivity and accuracy in the detection of rhodamine 6G (R6G) and serum from SLE patients. SERS technology was combined with deep learning algorithms to model serum features using selected CNN, AlexNet, and RF models. 92 % accuracy was achieved in classifying SLE patients by CNN models, and the reliability of these models in accurately identifying sera was verified by ROC curve analysis. This study highlights the great potential of Au@Ag-PSi substrate in SERS detection and introduces a novel deep learning approach for SERS for accurate screening of SLE. The proposed method and composite substrate provide significant value for rapid, accurate, and noninvasive SLE screening and provide insights into SERS-based diagnostic techniques.


Subject(s)
Deep Learning , Gold , Lupus Erythematosus, Systemic , Silver , Spectrum Analysis, Raman , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/diagnosis , Spectrum Analysis, Raman/methods , Humans , Gold/chemistry , Silver/chemistry , Rhodamines/chemistry , Silicon/chemistry , Female , Algorithms , Metal Nanoparticles/chemistry , Adult
20.
Front Oncol ; 14: 1399484, 2024.
Article in English | MEDLINE | ID: mdl-38868535

ABSTRACT

Background: With a rise in recent years, thyroid cancer (TC) is the most prevalent hormonal cancer worldwide. It is essential to investigate the inherent variability at the molecular level and the immune environment within tumors of various thyroid cancer subtypes in order to identify potential targets for therapy and provide precise treatment for patients with thyroid adenocarcinoma. Methods: First, we analyzed the expression of IRX5 in pan-cancer and papillary thyroid carcinoma by bioinformatics methods and collected paired samples from our center for validation. Subsequently, we analyzed the significance of IRX5 on the prognosis and diagnosis of PTC. Next, we explored the possible mechanisms by which IRX5 affects the prognosis of thyroid cancer patients by GO/KEGG enrichment analysis, and further investigated the effect of IRX5 on immune infiltration of thyroid cancer. Ultimately, by conducting experiments on cells and animals, we were able to show how IRX5 impacts the aggressive characteristics of thyroid cancer cells and its influence on macrophages within the immune system of thyroid cancer. Results: In 11 malignant tumors, including PTC, IRX5 is overexpressed and associated with a poor prognosis. IRX5 may affect the prognosis of PTC through embryonic organ development, ossification, mesenchyme development, etc. Increased IRX5 expression decreases the presence of cytotoxic and Th17 cells in papillary thyroid cancer. IRX5 was highly expressed in different PTC cell lines, such as K-1 and TPC-1. Silencing IRX5 effectively halted the growth and movement of PTC cells while also decreasing M2 polarization and enhancing M1 polarization in tumor-associated macrophages. Conclusion: IRX5 could impact the outlook of individuals with PTC by stimulating the shift of macrophages to M2 in the immune surroundings of thyroid cancer growths, suggesting a potential new focus for treating thyroid cancer, particularly through immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...