Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.360
Filter
1.
Int Immunopharmacol ; 138: 112623, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38991630

ABSTRACT

OBJECTIVE: Bladder cancer (BCa) is a highly lethal urological malignancy characterized by its notable histological heterogeneity. Autophagy has swiftly emerged as a diagnostic and prognostic biomarker in diverse cancer types. Nonetheless, the currently accessible autophagy-related signature specific to BCa remains limited. METHODS: A refined autophagy-related signature was developed through a 10-fold cross-validation framework, incorporating 101 combinations of machine learning algorithms. The performance of this signature in predicting prognosis and response to immunotherapy was thoroughly evaluated, along with an exploration of potential drug targets and compounds. In vitro and in vivo experiments were conducted to verify the regulatory mechanism of hub gene. RESULTS: The autophagy-related prognostic signature (ARPS) has exhibited superior performance in predicting the prognosis of BCa compared to the majority of clinical features and other developed markers. Higher ARPS is associated with poorer prognosis and reduced sensitivity to immunotherapy. Four potential targets and five therapeutic agents were screened for patients in the high-ARPS group. In vitro and vivo experiments have confirmed that FKBP9 promotes the proliferation, invasion, and metastasis of BCa. CONCLUSIONS: Overall, our study developed a valuable tool to optimize risk stratification and decision-making for BCa patients.

2.
J Stroke Cerebrovasc Dis ; : 107851, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992405

ABSTRACT

BACKGROUND: Various factors, including blood, inflammatory, infectious, and immune factors, can cause ischemic stroke. However, the primary cause is often the instability of cervical arteriosclerosis plaque. It is estimated that 18-25% of ischemic strokes are caused by the rupture of carotid plaque.1 Plaque stability is crucial in determining patient prognosis. Developing a highly accurate, non-invasive, or minimally invasive technique to assess carotid plaque stability is crucial for diagnosing and treating stroke.Previous research by our group has demonstrated that the expression levels of CHOP (C/EBP homologous protein) and GRP78 (glucose-regulated protein 78) are correlated with the stability of atherosclerotic plaques.2 OBJECT: This research assesses changes in GRP78 and CHOP expressions in human umbilical vein endothelial cells(HUVEC) following experiments within the hemodynamic influencing factors test system. Additionally, it includes conducting an empirical study on the impact of blood flow shear force on the stability of human carotid atherosclerotic plaques. The objective is to explore the implications of blood flow shear force on the stability of carotid atherosclerotic plaques. METHOD: The hemodynamic influencing factors test bench system was configured with low (Group A, 4 dyns/cm²), medium (Group B, 8 dyns/cm²), and high shear force groups (Group C, 12 dyns/cm²). Relative expression levels of GRP78 and CHOP proteins in human umbilical vein endothelial cells were measured using Western blot analysis, and quantitative analysis of GRP78 and CHOP mRNA was conducted using RT-qPCR. Meanwhile, plaques from 60 carotid artery patients, retrieved via Carotid Endarterectomy (CEA), were classified into stable (S) and unstable (U) groups based on pathological criteria. Shear force at the carotid bifurcation was measured preoperatively using ultrasound. Western blot and RT-qPCR were used to analyze the relative expression levels of GRP78 and CHOP proteins and mRNA, respectively, in the plaque specimens from both groups. RESULT: Expression levels of GRP78, CHOP proteins, and their mRNAs were assessed in groups A, B, and C via Western blot and RT-qPCR. Results showed that in the low-shear group, all markers were elevated in group A compared to groups B and C. Statistical analysis revealed significantly lower shear forces at the carotid bifurcation in group U compared to group S. In group U plaques, GRP78 and CHOP expressions were significantly higher in group U than in group S. CONCLUSION: Blood flow shear forces variably affect the expression of GRP78 and CHOP proteins, as well as their mRNA levels, in vascular endothelial cells. The lower the shear force and fluid flow rate, the higher the expression of GRP78 and CHOP, potentially leading to endoplasmic reticulum stress(ERS), which may destabilize the plaque.

3.
Virol J ; 21(1): 156, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992721

ABSTRACT

OBJECTIVES: The performance of the new Respiratory Pathogen panel (fluorescent probe melting curve, FPMC) for the qualitative detection of 12 organisms (chlamydia pneumoniae, mycoplasma pneumoniae, adenovirus, influenza A virus, influenza B virus, parainfluenza virus, rhinovirus, etc.) was assessed. METHODS: Prospectively collected nasopharyngeal swab (NPS) and sputum specimens (n = 635) were detected by using the FPMC panel, with the Sanger sequencing method as the comparative method. RESULTS: The overall percent concordance between the FPMC analysis method and the Sanger sequencing method was 100% and 99.66% for NPS and sputum specimens, respectively. The FPMC testified an overall positive percent concordance of 100% for both NPS and sputum specimens. The FPMC analysis method also testified an overall negative percent concordance of 100% and 99.38% for NPS and sputum specimens, respectively. CONCLUSIONS: The FPMC analysis method is a stable and accurate assay for rapid, comprehensive detecting for respiratory pathogens.


Subject(s)
Molecular Diagnostic Techniques , Nasopharynx , Respiratory Tract Infections , Sputum , Humans , Sputum/microbiology , Sputum/virology , Nasopharynx/virology , Nasopharynx/microbiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Molecular Diagnostic Techniques/methods , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Adult , Prospective Studies , Middle Aged , Adolescent , Female , Young Adult , Child , Male , Aged , Child, Preschool , Infant , Specimen Handling/methods , Sensitivity and Specificity , Aged, 80 and over
4.
Am J Clin Nutr ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964658

ABSTRACT

BACKGROUND: The relationships between 25-hydroxyvitamin D (25(OH)D) and calcium and age-related macular degeneration (AMD) are unclear. OBJECTIVE: This study aimed to investigate the causal role of 25(OH)D concentrations, calcium concentrations, and dietary supplements use of vitamin D and calcium on the risk of AMD and its subtypes. METHODS: Independent genetic variants associated with 25(OH)D and calcium concentrations were used as instrumental variables in published genome-wide association studies (GWASs) of European ancestry. The bidirectional two-sample Mendelian randomization (MR) analyses were performed using summary-level data from the UK Biobank and FinnGen datasets. Sensitivity analyses were conducted to ensure the robustness of the MR results. The meta-analyses were conducted using both fixed-effect and random-effect models to provide comprehensive and reliable estimates. RESULTS: A standard deviation increase in calcium concentrations was linked to a 14%, 17%, and 13% reduction in the likelihood of developing AMD (95% confidence interval [CI] = 0.77, 0.97), wet AMD (95% CI = 0.73, 0.95), and dry AMD (95% CI = 0.75, 1.00), respectively. No significant causal relationships were detected between genetically predicted 25(OH)D concentrations and AMD and its subtypes (all P > 0.05). The combined analyses showed that higher calcium concentrations were associated with a reduced risk of overall AMD, with an OR of 0.89 (95% CI = 0.81, 0.98). CONCLUSIONS: This study provides evidence supporting the causal relationship between calcium concentrations and the risk of AMD and its subtypes, which may have important implications for the prevention, monitoring, and treatment of AMD.

5.
Article in English | MEDLINE | ID: mdl-38965748

ABSTRACT

OBJECTIVE: To investigate the role of the microRNA (miRNA)-669f-5p/deoxycytidylate deaminase (Dctd) axis in sevoflurane inducing cognitive dysfunction in aged mice. METHODS: Sixty-six C57BL/6J mice were used in the experiment model and were randomly divided into the sevoflurane group and the control group. The mice in the sevoflurane group were anesthetised with 3.4% sevoflurane, whereas those in the control group were air-treated for the same period. The study was then performed using bioinformatics sequencing, as well as in vitro and in vivo validation. RESULTS: The mice in the sevoflurane group showed significant cognitive impairments in terms of a decrease in both spatial learning and memory abilities. Experimental doses of miR-669f-5p agonist exhibited no obvious effect on cognitive function following sevoflurane inhalation, but inhibiting the expression of miR-669f-5p could alleviate the impairments. Based on the results of the bioinformatics sequencing, miR-669f-5p/Dctd and the toll-like receptor (TLR) signalling pathway could be the key miRNA, gene and pathway leading to postoperative cognitive dysfunction following sevoflurane inhalation. The aged mice showed significantly increased expression of miR-669f-5p in the hippocampus following sevoflurane inhalation, and upregulating/inhibiting its expression could increase/decrease TLR expression in the hippocampus. Furthermore, miR-669f-5p could reduce the expression of the Dctd gene by binding to its 3'untranslated region. CONCLUSION: The miR-669f-5p/Dctd axis plays an important role in sevoflurane inducing cognitive dysfunction in aged mice, providing a new direction for further development of therapeutic strategies concerning the prevention and treatment of cognitive dysfunction associated with sevoflurane anaesthesia.

6.
J Pineal Res ; 76(5): e12987, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38975671

ABSTRACT

Sleep deprivation (SD) has been associated with a plethora of severe pathophysiological syndromes, including gut damage, which recently has been elucidated as an outcome of the accumulation of reactive oxygen species (ROS). However, the spatiotemporal analysis conducted in this study has intriguingly shown that specific events cause harmful damage to the gut, particularly to goblet cells, before the accumulation of lethal ROS. Transcriptomic and metabolomic analyses have identified significant enrichment of metabolites related to ferroptosis in mice suffering from SD. Further analysis revealed that melatonin could rescue the ferroptotic damage in mice by suppressing lipid peroxidation associated with ALOX15 signaling. ALOX15 knockout protected the mice from the serious damage caused by SD-associated ferroptosis. These findings suggest that melatonin and ferroptosis could be targets to prevent devastating gut damage in animals exposed to SD. To sum up, this study is the first report that proposes a noncanonical modulation in SD-induced gut damage via ferroptosis with a clearly elucidated mechanism and highlights the active role of melatonin as a potential target to maximally sustain the state during SD.


Subject(s)
Ferroptosis , Melatonin , Mice, Knockout , Sleep Deprivation , Animals , Mice , Melatonin/metabolism , Melatonin/pharmacology , Sleep Deprivation/metabolism , Male , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Lipid Peroxidation , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase
7.
Heliyon ; 10(12): e32943, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948032

ABSTRACT

Selecting A-share listed companies in Shanghai and Shenzhen, China, during the period of 2012-2021 as research subjects, this study examines the relationship and operational mechanisms between executive compensation and corporate ESG Ratings. It is found that executive compensation incentives can significantly enhance corporate ESG Ratings. This effect is achieved through promoting green innovation efficiency, enhancing environmental information disclosure, and improving financial performance. However, this positive impact weakens with an increase in management shareholding, but strengthens with a higher proportion of independent directors. When compensation exceeds appropriate levels, overcompensation leads to a decline in ESG Ratings. The significance of this study lies in revealing potential pathways for enhancing corporate sustainability through executive compensation incentives, while also emphasizing the importance of formulating appropriate compensation strategies.

8.
J Org Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951997

ABSTRACT

We have successfully synthesized a series of bidentate ligands by utilizing 2-(trimethylsilyl)phenyl trifluorosulfonate as a precursor for the benzyl group. This method proceeded by inserting a polythiourea into the C═S π-bond, intramolecular ring proton migration, and ring opening. Salient features of this strategy are mild reaction conditions, a novel product structure, excellent stereochemistry, and a good functional group tolerance. Furthermore, a series of density functional theory calculations were performed to gain insights into the transfer mechanism.

9.
Helicobacter ; 29(4): e13079, 2024.
Article in English | MEDLINE | ID: mdl-38984661

ABSTRACT

BACKGROUND: Eradicating Helicobacter pylori infection by bismuth quadruple therapy (BQT) is effective. However, the effect of BQT and subsequent fecal microbiota transplant (FMT) on the gut microbiota is less known. MATERIALS AND METHODS: This prospective randomized controlled trial was conducted at a tertiary hospital in China from January 2019 to October 2020, with the primary endpoints the effect of BQT on the gut microbiota and the effect of FMT on the gut microbiota after bismuth quadruple therapy eradication therapy. A 14-day BQT with amoxicillin and clarithromycin was administered to H. pylori-positive subjects, and after eradication therapy, patients received a one-time FMT or placebo treatment. We then collected stool samples to assess the effects of 14-day BQT and FMT on the gut microbiota. 16 s rDNA and metagenomic sequencing were used to analyze the structure and function of intestinal flora. We also used Gastrointestinal Symptom Rating Scale (GSRS) to evaluate gastrointestinal symptom during treatment. RESULTS: A total of 30 patients were recruited and 15 were assigned to either FMT or placebo groups. After eradication therapy, alpha-diversity was decreased in both groups. At the phylum level, the abundance of Bacteroidetes and Firmicutes decreased, while Proteobacteria increased. At the genus level, the abundance of beneficial bacteria decreased, while pathogenic bacteria increased. Eradication therapy reduced some resistance genes abundance while increased the resistance genes abundance linked to Escherichia coli. While they all returned to baseline by Week 10. Besides, the difference was observed in Week 10 by the diarrhea score between two groups. Compared to Week 2, the GSRS total score and diarrhea score decreased in Week 3 only in FMT group. CONCLUSIONS: The balance of intestinal flora in patients can be considerably impacted by BQT in the short term, but it has reverted back to baseline by Week 10. FMT can alleviate gastrointestinal symptoms even if there was no evidence it promoted restoration of intestinal flora.


Subject(s)
Anti-Bacterial Agents , Bismuth , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/therapy , Helicobacter Infections/microbiology , Helicobacter Infections/drug therapy , Gastrointestinal Microbiome/drug effects , Fecal Microbiota Transplantation/methods , Male , Female , Middle Aged , Helicobacter pylori/drug effects , Adult , Anti-Bacterial Agents/therapeutic use , Prospective Studies , Bismuth/therapeutic use , Drug Therapy, Combination , China , Amoxicillin/therapeutic use , Clarithromycin/therapeutic use , Treatment Outcome , Aged , Feces/microbiology
10.
J Org Chem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953547

ABSTRACT

An efficient [3 + 2] cycloaddition reaction between in situ generated nitrile imines from hydrazonoyl halides and vinylsulfonium salts is developed. The nitrile imines are demonstrated to be a new class of reaction partner for vinylsulfonium salts to conduct the [3 + 2] cycloaddition reaction. The process provides a concise and efficient method for the construction of pyrazole derivatives under mild reaction conditions with broad substrate scope, good product yields, and high regioselectivity.

11.
J Gastrointest Oncol ; 15(3): 1165-1178, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989440

ABSTRACT

Background: Pancreatic cancer is a highly aggressive malignancy with poor prognosis, and there is an urgent need to understand its molecular mechanisms for early diagnosis and treatment. Despite surgical resection being the only effective treatment, most patients are diagnosed at an advanced stage, missing the optimal window for therapy. Identifying novel biomarkers is crucial for prognostic assessment, treatment planning, and early intervention. Ephrin A4 (EFNA4), a member of the receptor tyrosine kinase family, is involved in vascular and epithelial development via regulation of cell migration and rejection. However, the role of EFNA4 in pancreatic cancer has not been reported. Therefore, our study aimed to clarify the role of EFNA4 in pancreatic cancer through bioinformatics analysis and vitro experiments. Methods: The expression of EFNA4 and its potential value as a diagnostic and prognostic biomarker in pancreatic cancer was analyzed using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Profiling Interactive Analysis (GEPIA) database. According to the expression level of EFNA4, patients were divided into high expression group and low expression group, and the correlation between overall survival (OS) and disease-free survival (DFS) with different expression levels of EFNA4 and clinical parameters were analyzed. Subsequently, reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect EFNA4 expression. The proliferation, invasion, and cloning ability of the cells were detected via Cell Counting Kit 8 (CCK8), Transwell, and plate cloning assays, respectively. Results: EFNA4 is highly expressed in pancreatic cancer, and upregulation of EFNA4 is associated with poor prognosis. In this study, EFNA4 expression was correlated with T stage and TNM (tumor-node-metastasis) stage of pancreatic cancer, and the median survival time and progression-free survival (PFS) were worse in those with high EFNA4 expression (394 days) than in those with low expression (525 days) [hazard ratio (HR): 1.47, 95% confidence interval (CI): 1.00-2.16, P=0.047]. In addition, EFNA4 was also found to be involved in the regulation of signal pathways such as cell adhesion, cyclic AMP, insulin secretion, pancreatic secretion, and protein digestion and absorption. In vitro experiments demonstrated that EFNA4 knockdown significantly inhibited the proliferation, cloning ability, and invasiveness of the PANC-1 and SW1990 pancreatic cancer cell lines. Conclusions: The abnormal expression of EFNA4 in pancreatic cancer is associated with poor prognosis. Knockout of EFNA4 gene could significantly inhibit the proliferation and invasion of pancreatic cancer cells. Therefore, EFNA4 may be one of the molecular targets for poor prognosis of patients with pancreatic cancer.

12.
J Craniofac Surg ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861352

ABSTRACT

OBJECTIVE: To summarize the application experience of the pneumatic arm in transnasal sphenoidal pituitary adenoma resection under neuroendoscope. METHODS: A retrospective analysis was conducted on the clinical data of 52 patients with pituitary adenoma who underwent endoscopic transsphenoidal surgery with pneumatic arm fixation in the Neurosurgery Department of the First Affiliated Hospital of Anhui Medical University from July 2021 to March 2024. Among them, there were 5 cases of pituitary microadenoma, 35 cases of macroadenoma, and 12 cases of giant adenoma. Head CT and a full set of hormones were re-examined within 24 hours after surgery to evaluate the surgical effect. Follow-up was conducted by the outpatient department after surgery to assess the clinical symptoms, hormone level, and imaging of all patients. RESULTS: Among 52 patients, gross total resection was achieved in 48 cases (92.3%), subtotal resection in 3 cases (5.8%), and partial resection in 1 case (1.9%). Preoperatively, 43 patients had diminished vision, with 40 showing improvement postoperatively, 1 worsening, and 2 having no significant improvement. Thirty-eight patients had headaches preoperatively, and all showed varying degrees of improvement postoperatively. Routine hormone examination within 24 hours after surgery showed that all 20 prolactinoma patients had restored normal hormone levels, 10 of 12 growth hormone-secreting adenoma patients normalized, and 4 of 6 cases of adrenocorticotropic hormone-secreting adenoma immediately relieved after surgery. Postoperative complications included intracranial hematoma in 1 case, cerebrospinal fluid leakage in 2 cases, transient diabetes insipidus in 6 cases, intracranial infection in 1 case, and no death cases. The median follow-up time of 52 patients was 18.6 months (range: 1-32 mo). During the follow-up period, the initial clinical symptoms of all patients improved to varying degrees, and they were able to work and live normally. At the last follow-up, 1 patient had recurrent tumor and 1 patient had progression. CONCLUSION: Transnasal sphenoidal resection of pituitary adenoma using a pneumatic arm-fixed neuroendoscope allows the operator to perform the surgery with both hands, resulting in satisfactory overall tumor resection and fewer surgical complications. This technique has good clinical value for promotion.

13.
Front Vet Sci ; 11: 1403493, 2024.
Article in English | MEDLINE | ID: mdl-38868499

ABSTRACT

The genetic trait of residual feed intake (RFI) holds considerable importance in the swine industry. Recent research indicates that the gut microbiota of pigs plays a pivotal role in the manifestation of the RFI trait. Nevertheless, the metabolic pathways involved in the functioning of these microorganisms remain elusive. Thus, based on the ranking of the RFI trait in Duroc pigs, the present study selected the top 10 and bottom 10 pigs as the experimental subjects. The distribution and metabolite differences of cecal microbiota were analyzed using 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. The low RFI cecal group was named LRC, and the high RFI cecal group was named HRC. The results indicate that the LRC group had lower RFI, feed conversion ratio (FCR), average daily feed intake (ADFI) (p < 0.001), and thinner backfat (p < 0.05) compared with the HRC group. We simultaneously recorded the foraging behavior as well, the LRC group had a significant increase in total time spent at the feeder per day (TPD) (p < 0.05) and a significant increase in average feed intake per mins (AFI) and the number of visits to the feeder per day (NVD) compared to the HRC group (p < 0.001). Clostridium_XVIII, Bulleidia, and Intestinimonas were significantly enriched in the LRC group (p < 0.01), while Sutterella, Fusobacterium, and Bacteroides were significantly increased in the HRC group (p < 0.01). In the metabolome, we detected 390 (248 metabolites up and 142 down in the LRC compared with HRC), and 200 (97 metabolites up and 103 down in the LRC compared with HRC) differential metabolites in positive and negative ionization modes. The comprehensive analysis found that in the LRC group, Escherichia and Eubacterium in the gut may increase serotonin content, respectively. Bacteroides may deplete serotonin. We suggest that the RFI may be partly achieved through tryptophan metabolism in gut microbes. In individuals with low RFI, gut microbes may enhance feed efficiency by enhancing host synthesis and metabolism of tryptophan-related metabolites.

14.
Imeta ; 3(1): e158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38868515

ABSTRACT

Antimicrobial resistance (AMR) is a major threat to global public health, and antibiotic resistance genes (ARGs) are widely distributed across humans, animals, and environment. Farming environments are emerging as a key research area for ARGs and antibiotic resistant bacteria (ARB). While the skin is an important reservoir of ARGs and ARB, transmission mechanisms between farming environments and human skin remain unclear. Previous studies confirmed that swine farm environmental exposures alter skin microbiome, but the timeline of these changes is ill defined. To improve understanding of these changes and to determine the specific time, we designed a cohort study of swine farm workers and students through collected skin and environmental samples to explore the impact of daily occupational exposure in swine farm on human skin microbiome. Results indicated that exposure to livestock-associated environments where microorganisms are richer than school environment can reshape the human skin microbiome and antibiotic resistome. Exposure of 5 h was sufficient to modify the microbiome and ARG structure in workers' skin by enriching microorganisms and ARGs. These changes were preserved once formed. Further analysis indicated that ARGs carried by host microorganisms may transfer between the environment with workers' skin and have the potential to expand to the general population using farm workers as an ARG vector. These results raised concerns about potential transmission of ARGs to the broader community. Therefore, it is necessary to take corresponding intervention measures in the production process to reduce the possibility of ARGs and ARB transmission.

15.
Biol Reprod ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938086

ABSTRACT

BACKGROUND: Gestational hypertension, often associated with elevated soluble Fms-related receptor tyrosine kinase 1 (sFlt-1), poses significant risks to both maternal and fetal health. Hydrogen sulfide (H2S), a gasotransmitter, has demonstrated blood pressure-lowering effects in hypertensive animals and humans. However, its role in pregnancy-induced hypertension remains unclear. OBJECTIVE: This study aimed to investigate the impact of GYY4137, a slow-release H2S donor, on sFlt-1-induced hypertension in pregnant rats and examine the underlying mechanisms. METHODS: Pregnant rats were administered sFlt-1 (6 µg/kg/day, intravenously) or vehicle from gestation day (GD) 12 to 20. A subset of these groups received GYY4137 (an H2S donor, 50 mg/kg/day, subcutaneously) from GD 16 to 20. Serum H2S levels, mean arterial blood pressure (CODA tail-cuff), uterine artery blood flow (ultrasonography), vascular reactivity to vasopressors and endothelial-dependent relaxation (myography), endothelial nitric oxide synthase (eNOS) protein expression in uterine arteries (Western blotting) were assessed. In addition, maternal weight gain, as well as fetal and placental weights, were measured. RESULTS: Elevated sFlt-1 reduced both maternal weight gain and serum H2S levels. GYY4137 treatment restored both weight gain and H2S levels in sFlt-1 dams. sFlt-1 increased mean arterial pressure and decreased uterine artery blood flow in pregnant rats. However, treatment with GYY4137 normalized blood pressure and restored uterine blood flow in sFlt-1 dams. sFlt-1 dams exhibited heightened vasoconstriction to phenylephrine and GYY4137 significantly mitigated the exaggerated vascular contraction. Notably, sFlt-1 impaired endothelium-dependent relaxation, while GYY4137 attenuated this impairment by upregulating eNOS protein levels and enhancing vasorelaxation in uterine arteries. GYY4137 mitigated sFlt-1-induced fetal growth restriction. CONCLUSION: sFlt-1 mediated hypertension is associated with decreased H2S levels. Replenishing H2S with the donor GYY4137 mitigates hypertension and improves vascular function and fetal growth outcomes. This suggests modulation of H2S could offer a novel therapeutic strategy for managing gestational hypertension and adverse fetal effects.

17.
Sci Rep ; 14(1): 14694, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926398

ABSTRACT

Breast cancer has become the most common type of cancers worldwide. Its high prevalence and malignant features are associated with various environmental factors and molecules. The KH-type splicing regulatory protein (KHSRP) participates in the development of breast cancer, while the underlying mechanisms are largely unknown. In this study, we silenced KHSRP expression in MDA-MB-231 cells by small interfering RNA (siKHSRP), and then assessed its effects on cellular features. Finally, we performed whole transcriptome sequencing (RNA-seq) experiments to explore the downstream targets of KHSRP, and validated their changed pattern using quantitative polymerase chain reaction. We found KHSRP showed higher expression level and was associated with worse prognosis in breast cancer patients. In siKHSRP samples, the proliferation, invasion, and migration abilities were significantly repressed compared with negative control (NC) samples, while the apoptosis level was increased. By investigating the RNA-seq data, we found KHSRP globally regulates the expression and alternative splicing profiles of MDA-MB-231 cells by identifying 1632 differentially expressed genes (DEGs) and 1630 HKSRP-regulated AS events (RASEs). Functional enriched analysis of DEGs demonstrated that cilium assembly and movement and extracellular matrix organization pathways were specifically enriched in up DEGs, consistent with the repressed migration and invasion abilities in siKHSRP cells. Interestingly, the cell cycle and DNA damage and repair associated pathways were enriched in both down DEGs and RASE genes, suggesting that KHSRP may modulate cell proliferation by regulating genes in these pathways. Finally, we validated the changed expression and AS patterns of genes in cell cycle and DNA damage/repair pathways. Expression levels of BIRC5, CCNA2, CDK1, FEN1, FOXM1, PTTG1, and UHRF1 were downregulated in siKHSRP samples. The AS patterns of PARK7, ERCC1, CENPX, and UBE2A were also dysregulated in siKHSRP samples and confirmed PCR experiments. In summary, our study comprehensively explored the downstream targets and their functions of KHSRP in breast cancer cells, highlighting the molecular mechanisms of KHSRP on the oncogenic features of breast cancer. The identified molecular targets could be served as potential therapeutic targets for breast cancer in future.


Subject(s)
Alternative Splicing , Breast Neoplasms , Cell Proliferation , DNA Repair , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , DNA Repair/genetics , Cell Line, Tumor , Female , Cell Proliferation/genetics , Cell Movement/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Apoptosis/genetics , Carcinogenesis/genetics , MDA-MB-231 Cells
18.
Acta Parasitol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888726

ABSTRACT

BACKGROUND: In recent years, the trichomonosis in raccoon dogs in China had occurred frequently. Pentatrichomonas hominis had been described in raccoon dogs in China in some previous studies. PURPOSE TO REVEAL: whether raccoon dogs can be infected by other trichomonad species besides P. hominis, and clarify the prevalence and species distribution of trichomonad in raccoon dogs. METHODS: Herein, the 389 fecal samples were collected from farm-raised raccoon dogs in Hebei Province, all the samples were detected using the microscopic examination and several fecal samples containing trichomonad-like organisms were processed, cultured, stained, and photographed. Meanwhile, all the samples were screened by the species-specific nested PCR based on the small subunit rRNA (SSU rRNA) gene of P. hominis,Tritrichomonas foetus and Tetratrichomonas buttreyi, respectively, and all positive secondary PCR amplications obtained in this study were sequenced, aligned and analysed. RESULTS: 62 fecal samples (15.9%,62/389) were trichomonad-positive under light microscopy, and the trichomonad-like cells were clearly observed in the culture contents. The PCR results showed that 100 samples were trichomonad-positive, including 45 P. hominis-positive samples (11.6%,45/389), 32 T. foetus-positive samples (8.2%,32/389), and 33 T. buttreyi-positive samples (8.5%,33/389), respectively. Double mixed infections were observed in 10 samples. The prevalence of T. foetus and P. hominis were both significantly higher in raccoon dogs with diarrhea (13.9%, and 25.0%) than that in raccoon dogs without diarrhea (7.6%, and 9.3%) (p < 0.05).All samples confirmed as trichomonad-positive under microscopy were also found to be trichomonad-positive by PCR analysis. The sequencing and phylogenetic analysis demonstrated the sequences obtained in this study belonged to P. hominis, T. foetus and T. buttreyi SSU rRNA, respectively. Among them, the T. buttreyi SSU rRNA sequences obtained in this study harbored the new sequence polymorphisms. Based on preliminary morphological and molecular analyses, raccoon dogs are considered as the new host of T. foetus and T. buttreyi. CONCLUSION: This is the first report about the identifcation and prevalence of T. foetus and T. buttreyi in raccoon dogs in China, and the results increase our knowledge about the host range and prevalence of trichomonad species.

19.
Leukemia ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890447

ABSTRACT

Chromosomal translocations of the nucleoporin 98 (NUP98) gene are found in acute myeloid leukemia (AML) patients leading to very poor outcomes. The oncogenic activity of NUP98 fusion proteins is dependent on the interaction between Mixed Lineage Leukemia 1 and menin. NUP98-rearranged (NUP98-r) leukemia cells also rely on specific kinases, including CDK6 and/or FLT3, suggesting that simultaneous targeting of these kinases and menin could overcome limited sensitivity to single agents. Here, we found that combinations of menin inhibitor, MI-3454, with kinase inhibitors targeting either CDK6 (Palbociclib) or FLT3 (Gilteritinib) strongly enhance the anti-leukemic effect of menin inhibition in NUP98-r leukemia models. We found strong synergistic effects of both combinations on cell growth, colony formation and differentiation in patient samples with NUP98 translocations. These combinations also markedly augmented anti-leukemic efficacy of menin inhibitor in Patient Derived Xenograft models of NUP98-r leukemia. Despite inhibiting two unrelated kinases, when Palbociclib or Gilteritinib were combined with the menin inhibitor, they affected similar pathways relevant to leukemogenesis, including cell cycle regulation, cell proliferation and differentiation. This study provides strong rationale for clinical translation of the combination of menin and kinase inhibitors as novel treatments for NUP98-r leukemia, supporting the unexplored combinations of epigenetic drugs with kinase inhibitors.

20.
Sci Rep ; 14(1): 12884, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839838

ABSTRACT

The aim of this study was to develop a real-time risk prediction model for extrauterine growth retardation (EUGR). A total of 2514 very preterm infants were allocated into a training set and an external validation set. The most appropriate independent variables were screened using univariate analysis and Lasso regression with tenfold cross-validation, while the prediction model was designed using binary multivariate logistic regression. A visualization of the risk variables was created using a nomogram, while the calibration plot and receiver operating characteristic (ROC) curves were used to calibrate the prediction model. Clinical efficacy was assessed using the decision curve analysis (DCA) curves. Eight optimal predictors that namely birth weight, small for gestation age (SGA), hypertensive disease complicating pregnancy (HDCP), gestational diabetes mellitus (GDM), multiple births, cumulative duration of fasting, growth velocity and postnatal corticosteroids were introduced into the logistic regression equation to construct the EUGR prediction model. The area under the ROC curve of the training set and the external verification set was 83.1% and 84.6%, respectively. The calibration curve indicate that the model fits well. The DCA curve shows that the risk threshold for clinical application is 0-95% in both set. Introducing Birth weight, SGA, HDCP, GDM, Multiple births, Cumulative duration of fasting, Growth velocity and Postnatal corticosteroids into the nomogram increased its usefulness for predicting EUGR risk in very preterm infants.


Subject(s)
Gestational Age , Infant, Premature , ROC Curve , Humans , Infant, Newborn , Female , Infant, Premature/growth & development , Pregnancy , Male , Nomograms , Birth Weight , Infant, Small for Gestational Age/growth & development , Risk Factors , Diabetes, Gestational/diagnosis , Fetal Growth Retardation/diagnosis , Logistic Models
SELECTION OF CITATIONS
SEARCH DETAIL
...