Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.784
Filter
1.
Transl Pediatr ; 13(6): 976-986, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984028

ABSTRACT

Background: Congenital mesoblastic nephroma (CMN) is a rare renal tumor with good prognosis in children; however, cellular CMN is a special subtype with poor prognosis. The ETV6 fusion gene has been found in some cellular CMNs, whereas CMNs with TPM3::NTRK1 fusion gene have not been reported. This study aims to share the progression and treatment of a case of CMNs with TPM3::NTRK1 fusion gene, in order to provide experience for the diagnosis and treatment of such specific diseases. Case Description: We report a case of CMN with TPM3::NTRK1 fusion gene and a 3-year course of disease that originated during the fetal period. The child experienced rapid tumor progression 22 months after birth, followed by tumor recurrence 3 months after complete resection of CMN. Although traditional chemotherapy could not prevent the tumor progression. The tropomyosin receptor kinase (TRK) inhibitor larotrectinib resulted in significant inhibitory effects on metastatic lesions in the lungs, liver, and peritoneum. However, the patient ultimately died as the tumor became resistant to larotrectinib. Conclusions: CMN, is a rare pediatric renal tumor that warrant prompt surgical management. A watchful waiting approach may allow for aggressive growth of metastatic disease, as seen in this case of cellular CMN with TPM3::NTRK1 fusion gene, TRK inhibitors can play significant roles in the treatment of CMN with TPM3::NTRK1 fusion gene, but we still need to pay attention to the phenomenon of drug resistance to larotrectinib caused by site mutations of TRKA.

2.
Brachytherapy ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960768

ABSTRACT

BACKGROUND AND PURPOSE: 3D-printed templates are used in intracavitary/interstitial brachytherapy (3DP-IC/IS) for locally advanced cervical cancer (LACC). We applied failure mode and effects analysis (FMEA) twice in one year to improve 3DP-IC/IS safety. MATERIALS AND METHODS: A risk assessment group was established. We created a process map for 3DP-IC/IS procedures, identifying potential failure modes (FMs) and evaluating occurrence (O), detectability (D), severity (S), and risk priority number (RPN = O*D*S). High RPN values identified high-risk FMs, and quality control (QC) methods were determined by root cause analysis. A second FMEA was performed a year later. RESULTS: The 3DP-IC/IS process included 10 main steps, 48 subprocesses, and 54 FMs. Initial RPN values ranged from 4.50 to 171.00 (median 50.50; average 52.18). Ten high-risk FMs were identified: (1) unreasonable needle track design (171.00/85.50), (2) noncoplanar needle label identification failure (126.00/64.00), (3) template model reconstruction failure (121.50/62.50), (4) improper gauze filling (112.00/60.25), (5) poor needle position (112.00/52.50). QC interventions lowered all high-risk RPN values during the second assessment. CONCLUSIONS: A feasible 3DP-IC/IS process was proposed. Staff training, automatic needle path planning, insertion guidance diagrams, template checking, system commissioning, and template design improvements effectively enhanced process safety.

3.
Langmuir ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981013

ABSTRACT

Bubble transportation and related flotation are ubiquitous phenomena in nature and industry. Various surfaces with distinct morphologies and specific wettability properties have been engineered by organisms in nature and by humans to facilitate the targeted movement of bubbles. However, existing methods predominantly rely on continuous surfaces, limiting the ability of bubbles to deviate from their path before reaching their intended destination. Therefore, directional transportation of bubbles using noncontiguous surfaces still remains a significant challenge. Inspired by water spiders' ability to capture bubbles underwater using their hydrophobic surface for survival, we propose a novel transport strategy that utilizes patterned superhydrophobic surfaces (PSHSs) and a superhydrophobic tweezer. This strategy is implemented by switching between the hood mode and puncture mode of the moving three-phase contact lines to load and unload the bubble. To quantitatively evaluate the loss ratio of the bubble during transportation, a simple and exquisite bubble-weighing apparatus is devised. Our findings indicate that circular PSHSs demonstrate superior bubble adhesion and achieve the highest bubble transport ratio of 95.1%. In order to validate the promising application of this novel method, we employ the computer numerical control (CNC) technology to facilitate the autonomous loading and precise transportation of underwater bubbles, as well as the blending and ionization of combustible gas bubbles with air bubbles at different volume ratios.

4.
Behav Sci Law ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965769

ABSTRACT

Despite contradictory empirical evidence, some suggest that physical exercise is directly related to bullying perpetration. Moreover, the quality of social relationships between adolescents and their parents, peers, and teachers has been proposed as a crucial mediator in the relationship between physical exercise and bullying perpetration. However, few empirical studies have examined such hypotheses. This study used data obtained from the 2014-2015 China Education Panel Survey to examine the direct association between physical exercise and bullying behaviors, as well as the indirect pathways from physical exercise to bullying that are mediated by teenagers' social relationship quality. The results showed no significant direct relationship between physical exercise and bullying behaviors. However, physical exercise has indirect associations with bullying behaviors mediated through social relationship quality, with peer relationships having the strongest mediating effect. The findings indicate that social relationships could mediate the association between physical exercise and bullying behaviors. The study suggests that future prevention and intervention programs should promote adolescents' participation in physical exercise and their social interactions with parents, peers, and teachers to reduce bullying perpetration.

5.
Phytochemistry ; 226: 114216, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972444

ABSTRACT

Artemisia annua L. ("Qinghao" in Chinese) is a famous traditional Chinese medicinal herb and has been used to treat malaria and various tumors. Our preliminary screening indicated that the EtOAc extract of A. annua manifested activity against HepG2, Huh7, and SK-Hep-1 cell lines with inhibitory ratios of 53.2%, 52.1%, and 59.6% at 200 µg/mL, respectively. Bioassay-guided isolation of A. annua afforded 14 unusual cadinane-involved sesquiterpenoid dimers, artemannuins A‒N (1-14), of which the structures were elucidated by extensive spectral analyses, ECD calculations, and single-crystal X-ray diffraction. Structurally, these compounds were classified into five different types based on the coupled modes of two monomeric sesquiterpenoids. Among them, compounds 1-9 represented the first examples of sesquiterpenoid dimers formed via the C-3‒C-3' single bond of two 5(4 â†’ 3)-abeo-cadinane sesquiterpenoid monomers, while compounds 13 and 14 were dimers fused by cadinane and humulane sesquiterpenoids via an ester bond. Methylated derivatives of 1, 4, 6, and 8 showed antihepatoma activity against HepG2, Huh7, and SK-Hep-1 cell lines with IC50 values ranging from 30.5 to 57.2 µM.

6.
Sci Total Environ ; : 174689, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992385

ABSTRACT

Mineral protection mechanisms are important in determining the response of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) to temperature changes. However, the underlying mechanisms for how POC and MAOC respond to temperature changes are remain unclear. By translocating soils across 1304 m, 1425 m and 2202 m elevation gradient in a temperate forest, simulate nine months of warming (with soil temperature change of +1.41 °C and +3.91 °C) and cooling (with soil temperature change of -1.86 °C and -4.20 °C), we found that warming translocation significantly decreased POC by an average of 10.84 %, but increased MAOC by an average of 4.25 %. Conversely, cooling translocation led to an average increase of 8.64 % in POC and 13.48 % in MAOC. Exchangeable calcium (Caexe) had a significant positive correlation with POC and MAOC during temperature changes, and Fe/Al-(hydr)oxides had no significant correlation or a significant negative correlation with POC and MAOC. Our results showed that POC was more sensitive than MAOC to temperature changes. Caexe mediated the stability of POC and MAOC under temperature changes, and Fe/Al-(hydr)oxides had no obvious protective effect on POC and MAOC. Our results support the role of mineral protection in the stabilization mechanism of POC and MAOC in response to climate change and are critical for understanding the consequences of global change on soil organic carbon (SOC) dynamics.

7.
Sci Total Environ ; 947: 174483, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969139

ABSTRACT

Suspended solids concentration (SSC) in a river is closely relevant to river water turbidity. Investigation of their relationship in this study is accompanied by observed turbidity and SSC values, which were obtained from the testing results of water samples and monitored conditions in streamflow. The water samples were collected from two observation stations with a broad range of sediment concentrations in the Lai Chi Wo catchment in Hong Kong, China. We classified the target rainfall events into single-peak event type and dual-peak event type for a distinguished discussion of the relationship between SSC and turbidity in this study. At a finer classification, each event is separated into defined processes for the analysis, where two main processes refer to the periods that SSC rises from a normal state to a peak state first and the followed periods that SSC recesses to ordinary status gradually. It is advised by the analysis results that the estimation of SSC through turbidity values should be based on the same rainfall types for the upstream station. However, the results show that the classification of rainfall types does not need to take downstream areas into consideration. Furthermore, current research implies that the individual established connections between SSC and turbidity value at different stages (particularly referring to the rising period and recessing period) could be applied to estimate SSC at the same station via continuous turbidity values for both this and other ungauged stations with similar topographical features in the future. Meanwhile, this research approach provides new insight exploring various behaviors of sediments at different stages during an integral rainfall event. A comparison of distinguished performances of sediment during corresponding stages in a rainfall event makes contributions to diverse relationship between SSC and turbidity in the mountainous river.

8.
Sci Data ; 11(1): 736, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971804

ABSTRACT

Microorganisms are essential in the decomposition of corpses and play a significant role in forensic science. However, previous studies have primarily focused on animal remains, specifically the gut, skin, and burial environment. Insufficient research has been conducted on the microbiota of human cadavers, especially in cases of advanced decomposition and additional tissues, resulting in a lack of relevant reference data. In this study, the microbiota of eight cadavers at different stages of decomposition were detected using 16S rRNA, metagenomic sequencing and 2bRAD-M sequencing. Nine different sites, including oral and nasal cavities, heart, liver, spleen, lung, kidney, muscle and gut, were analysed and the efficacy of these methods was evaluated. The results showed that 16S rRNA sequencing was the most cost-effective method for the study of cadavers in the early stages of decomposition, whereas for cadaveric tissues in the late stages of decomposition, 2bRAD-M could overcome host contamination more effectively than metagenomic sequencing. This paves the way for new opportunities in data retrieval and promotes in-depth investigations into the microbiota.


Subject(s)
Cadaver , Metagenomics , Microbiota , RNA, Ribosomal, 16S , Humans , RNA, Ribosomal, 16S/genetics
9.
BMC Psychol ; 12(1): 381, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978147

ABSTRACT

BACKGROUND AND OBJECTIVES: Psychosocial factors affect individuals' desire for physical activity. A newly developed instrument (Tendency to Avoid Physical Activity and Sport; TAPAS) has been designed to assess the avoidance of physical activity. Considering cultural differences could be decisive factors, the present study aimed to translate and validate the TAPAS into Chinese (Mandarin) for Taiwanese youths, and further cultural comparisons are expected. METHODS: Standard translation procedure (i.e., forward translation, back translation, and reconciliation) was used to translate the English TAPAS into the Chinese TAPAS. Following translation, 608 youths (mean [SD] age 29.10 [6.36] years; 333 [54.8%] women) participated in the study via a snowballing sampling method with an online survey. All participants completed the Chinese TAPAS and additional instruments assessing weight stigma and psychological distress. Confirmatory factor analysis (CFA) was used to examine the factor structure of the Chinese TAPAS and multigroup CFA to examine measurement invariance across gender (men vs. women) and weight status (overweight vs. non-overweight). Pearson correlations were used to examine the concurrent validity; independent t-tests between gender groups and weight status groups were used to examine the known-group validity. RESULTS: Consistent with the English version, the Chinese TAPAS was found to have a one-factor structure evidenced by CFA results. The structure was invariant across gender and weight status groups evidenced by multigroup CFA results. Concurrent validity was supported by significant associations with the related constructs assessed (r = 0.326 to 0.676; p < 0.001). Known-group validity was supported by the significant differences in TAPAS total scores between gender and weight status groups (p = 0.004 and < 0.001; Cohen's d = 0.24 and 0.48). CONCLUSION: The Chinese version of the TAPAS is a valid and reliable instrument assessing individuals' avoidance of physical activity and sports due to underlying psychosocial issues among Taiwanese youths. It is anticipated to be applied within a large Asian population, as well as cross-cultural comparisons, for further explorations in health, behavioral and epidemiological research and practice.


Subject(s)
Exercise , Psychometrics , Sports , Humans , Male , Female , Taiwan , Exercise/psychology , Sports/psychology , Reproducibility of Results , Psychometrics/instrumentation , Adult , Surveys and Questionnaires/standards , Young Adult , Adolescent , Translations , Factor Analysis, Statistical , Translating
10.
Adv Sci (Weinh) ; : e2308176, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39024521

ABSTRACT

Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.

11.
Sci Total Environ ; 945: 173861, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38871323

ABSTRACT

Coastal wetlands are key players in mitigating global climate change by sequestering soil organic matter. Soil organic matter consists of less stable particulate organic matter (POM) and more stable mineral-associated organic matter (MAOM). The distribution and drivers of MAOM and POM in coastal wetlands have received little attention, despite the processes and mechanisms differ from that in the upland soils. We explored the distribution of POM and MAOM, their contributions to SOM, and the controlling factors along a salinity gradient in an estuarine wetland. In the estuarine wetland, POM C and N were influenced by soil depth and vegetation type, whereas MAOM C and N were influenced only by vegetation type. In the estuarine wetland, SOM was predominantly in the form of MAOM (> 70 %) and increased with salinity (70 %-76 %), leading to long-term C sequestration. Both POM and MAOM increased with SOM, and the increase rate of POM was higher than that of MAOM. Aboveground plant biomass decreased with increasing salinity, resulted in a decrease in POM C (46 %-81 %) and N (52 %-82 %) pools. As the mineral amount and activity, and microbial biomass decreased, the MAOM C (2.5 %-64 %) and N pool (8.6 %-59 %) decreased with salinity. When evaluating POM, the most influential factors were microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Key parameters, including MBC, DOC, soil salinity, soil water content, aboveground plant biomass, mineral content and activity, and bulk density, were identified as influencing factors for both MAOM abundance. Soil water content not only directly controlled MAOM, but together with salinity also indirectly regulated POM and MAOM by controlling microbial biomass and aboveground plant biomass. Our findings have important implications for improving the accumulation and increased stability of soil organic matter in coastal wetlands, considering the global sea level rise and increased frequency of inundation.

12.
Dalton Trans ; 53(26): 10982-10990, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874222

ABSTRACT

Two lanthanide complexes with formulae [DyIII(LN5)(pentafluoro-PhO)3] (1) and [DyIII(LN5)(2,6-difluoro-PhO)2](BPh4) (2) (LN5 = 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadecal (19),2,13,15,17-pentaene) were structurally and magnetically characterized. DyIII ions lie in the cavity of a five coordinate nitrogen macrocycle, and in combination with the introduction of multi-fluorinated monodentate phenoxyl coligands a high axiality coordination symmetry is built. Using the pentafluorophenol co-ligand, complex 1 with a D2d coordination environment, is obtained and displays moderate single-molecule magnets (SMMs) behavior. When difluorophenol co-ligands were used, a higher local axisymmetric pentagonal bipyramidal coordination geometry was observed in complex 2, which displays apparent slow magnetic relaxation behavior with a hysteresis temperature of up to 5 K. Further magnetic studies of diluted samples combined with ab initio calculations indicate that the high axiality plays a crucial role in suppressing quantum tunneling of magnetization (QTM) and consequently results in good slow magnetic relaxation behavior. Different fluoro-substituted phenoxyl co-ligands have phenoloxy oxygen atoms with different electrostatic potentials as well as a different number of phenoloxy coligands along the magnetic axis, resulting in different ligand field strengths and coordination symmetries.

13.
Adv Mater ; : e2405238, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923661

ABSTRACT

The ongoing tide of spent lithium-ion batteries (LIBs) urgently calls for high-value output in efficient recycling. Recently, direct regeneration has emerged as a novel recycling strategy but fails to repair the irreversible morphology and structure damage of the highly degraded polycrystalline layered oxide materials. Here, this work carries out a solid-state upcycling study for the severely cracked LiNi1-x-yCoxMnyO2 cathodes. The specific single-crystallization process during calcination is investigated and the surface rock salt phase is recognized as the intrinsic obstacle to the crystal growth of the degraded cathodes due to sluggish diffusion in the heterogeneous grain boundary. Accordingly, this work revives the fatigue rock salt phase by restoring a layered surface and successfully reshapes severely broken cathodes into the high-performance single-crystalline particles. Benefiting from morphological and structural integrity, the upcycled single-crystalline cathode materials exhibit an enhanced capacity retention rate of 93.5% after 150 cycles at 1C compared with 61.7% of the regenerated polycrystalline materials. The performance is also beyond that of the commercial cathodes even under a high cut-off voltage (4.5 V) or high operating temperature (45 °C). This work provides scientific insights for the upcycling of the highly degraded cathodes in spent LIBs.

14.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38836332

ABSTRACT

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Subject(s)
Nanotubes, Carbon , Pentacyclic Triterpenes , Pneumonia , Signal Transduction , Triterpenes , Animals , Male , Mice , Anti-Inflammatory Agents/pharmacology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism , Mice, Inbred C57BL , Mice, Knockout , Nanotubes, Carbon/toxicity , NF-kappa B/metabolism , Pentacyclic Triterpenes/pharmacology , Pneumonia/chemically induced , Pneumonia/drug therapy , Pneumonia/prevention & control , Pneumonia/metabolism , Signal Transduction/drug effects , Triterpenes/pharmacology
15.
Neuroreport ; 35(12): 763-770, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38935079

ABSTRACT

It is commonly accepted that exposure to stress may cause overactivity in the orofacial muscles, leading to consistent muscle pain, which is the main symptom of temporomandibular disorders. The central neural mechanism underlying this process, however, remains unclear. The locus coeruleus is considered to play an important role in stress-related behavioral changes. Therefore, the present study was designed to examine the role of locus coeruleus neurons in masseter overactivity induced by stress. C57BL/6 mice were subjected to chronic restraint stress for 14 days to establish an animal model. The behavioral changes and the electromyography of the masseter muscle in mice were measured. The expression of Fos in locus coeruleus was observed by immunofluorescence staining to assess neuronal activation. A chemogenetic test was used to inhibit locus coeruleus neuronal activity, and the behavioral changes and electromyography of the masseter muscle were observed again. The results exhibited that chronic restraint stress could induce anxiety-like behavior, overactivity of the masseter muscle, and significant activation of locus coeruleus neurons in mice. Furthermore, inhibition of noradrenergic neuron activity within the locus coeruleus could alleviate stress-induced anxiety behavior and masseter muscle overactivity. Activation of noradrenergic neurons in locus coeruleus induced by stress may be one of the central regulatory mechanisms for stress-induced anxiety-like behaviors and overactivity of masseter muscles.


Subject(s)
Electromyography , Locus Coeruleus , Masseter Muscle , Mice, Inbred C57BL , Restraint, Physical , Stress, Psychological , Animals , Locus Coeruleus/physiopathology , Masseter Muscle/physiopathology , Stress, Psychological/physiopathology , Male , Mice , Disease Models, Animal , Anxiety/physiopathology , Anxiety/etiology
16.
BMC Urol ; 24(1): 116, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849783

ABSTRACT

BACKGROUND: There are numerous methods available for predicting sepsis following Percutaneous Nephrolithotomy. This study aims to compare the predictive value of Quick Sequential Organ Failure Assessment (qSOFA), Systemic Inflammatory Response Syndrome (SISR), National Early Warning Score (NEWS), interleukin-6 (IL-6), and procalcitonin (PCT) for septicemia. METHODS: Patients who underwent percutaneous nephrolithotomy were included in the study and divided into a control group and a septic shock group. The effectiveness of qSOFA, SIRS, NEWS, Interleukin-6, and Procalcitonin was assessed, with Receiver Operating Characteristic curves and Area Under the Curve used to compare the predictive accuracy of these four indicators. RESULTS: Among the 401 patients, 16 cases (3.99%) developed septic shock. Females, elderly individuals, and patients with positive urine culture and positive nitrite in urine were found to be more susceptible to septic shock. PCT, IL-6, SIRS, NEWS, qSOFA, and surgical time were identified as independent risk factors for septic shock. The cutoff values are as follows: qSOFA score > 0.50, SIRS score > 2.50, NEWS score > 2.50, and IL-6 > 264.00 pg/ml. Among the 29 patients identified by IL-6 as having sepsis, 16 were confirmed to have developed sepsis. The qSOFA identified 63 septicemia cases, with 16 confirmed to have developed septicemia; NEWS identified 122 septicemia cases, of which 14 cases actually developed septicemia; SIRS identified 128 septicemia patients, with 16 confirmed to have developed septicemia. In terms of predictive ability, IL-6 (AUC 0.993, 95% CI 0.985 ~ 1) demonstrated a higher predictive accuracy compared to qSOFA (AUC 0.952, 95% CI 0.928 ~ 0.977), NEWS (AUC 0.824, 95% CI 0.720 ~ 0.929) and SIRS (AUC 0.928, 95% CI 0.888 ~ 0.969). CONCLUSIONS: IL-6 has higher accuracy in predicting septic shock after PCNL compared to qSOFA, SIRS, and NEWS.


Subject(s)
Interleukin-6 , Nephrolithotomy, Percutaneous , Postoperative Complications , Procalcitonin , Shock, Septic , Adult , Aged , Female , Humans , Male , Middle Aged , Biomarkers/blood , Interleukin-6/blood , Nephrolithotomy, Percutaneous/adverse effects , Organ Dysfunction Scores , Postoperative Complications/etiology , Postoperative Complications/diagnosis , Postoperative Complications/blood , Predictive Value of Tests , Procalcitonin/blood , Retrospective Studies , Shock, Septic/etiology , Shock, Septic/blood
17.
Small ; : e2400260, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860737

ABSTRACT

Harnessing the developmental events of mesenchymal condensation to direct postnatal dental stem cell aggregation represents a cutting-edge and promising approach to tooth regeneration. Tooth avulsion is among the most prevalent and serious dental injuries, and odontogenic aggregates assembled by stem cells from human exfoliated deciduous teeth (SHED) have proven effective in revitalizing avulsed teeth after replantation in the clinical trial. However, whether and how SHED aggregates (SA) communicate with recipient components and promote synergistic tissue regeneration to support replanted teeth remains elusive. Here, it is shown that SA-mediated avulsed tooth regeneration involves periodontal restoration and recovery of recipient Gli1+ stem cells, which are mobilized and necessarily contribute to the reestablishment of the tooth-periodontal ligament-bone interface. Mechanistically, the release of extracellular vesicles (EVs) is revealed indispensable for the implanted SA to mobilize recipient Gli1+ cells and regenerate avulsed teeth. Furthermore, SHED aggregates-released EVs (SA-EVs) are featured with odontogenic properties linked to tissue regeneration, which enhance migration, proliferation, and differentiation of Gli1+ cells. Importantly, local application of SA-EVs per se empowers recipient Gli1+ cells and safeguards regeneration of avulsed teeth. Collectively, the findings establish a paradigm in which odontogenesis-featured EVs govern donor-recipient stem cell interplay to achieve tooth regeneration, inspiring cell-free translational regenerative strategies.

19.
Ecology ; : e4375, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924062

ABSTRACT

Fungi are key decomposers of deadwood, but the impact of anthropogenic changes in nutrients and temperature on fungal community and its consequences for wood microbial respiration are not well understood. Here, we examined how nitrogen and phosphorus additions (field experiment) and warming (laboratory experiment) together influence fungal composition and microbial respiration from decomposing wood of angiosperms and gymnosperms in a subtropical forest. Nutrient additions significantly increased wood microbial respiration via fungal composition, but effects varied with nutrient types and taxonomic groups. Specifically, phosphorus addition significantly increased wood microbial respiration (65%) through decreased acid phosphatase activity and increased abundance of fast-decaying fungi (e.g., white rot), while nitrogen addition marginally increased it (30%). Phosphorus addition caused a greater increase in microbial respiration in gymnosperms than in angiosperms (83.3% vs. 46.9%), which was associated with an increase in Basidiomycota:Ascomycota operational taxonomic unit abundance in gymnosperms but a decrease in angiosperms. The temperature dependencies of microbial respiration were remarkably constant across nutrient levels, consistent with metabolic scaling theory hypotheses. This is because there was no significant interaction between temperature and wood phosphorus availability or fungal composition, or the interaction among the three factors. Our results highlight the key role of tree identity in regulating nutrient response of wood microbial respiration through controlling fungal composition. Given that the range of angiosperm species may expand under climate warming and forest management, our data suggest that expansion will decrease nutrient effects on forest carbon cycling in forests previously dominated by gymnosperm species.

20.
Ibrain ; 10(2): 172-185, 2024.
Article in English | MEDLINE | ID: mdl-38915950

ABSTRACT

We aim to explore the pharmacological efficacy and molecular network mechanism of Shexiang Huayu Xingnao granules (SX granules) in the treatment of intracerebral hemorrhage (ICH) based on experiments and network pharmacology. After the ICH model establishment, the behavioral functions of rats were assessed by the modified neurological severity score (mNSS), the wire suspension test, and the rotarod test. Brain histomorphological changes were observed using 2,3,5-triphenyl tetrazolium chloride (TTC), hematoxylin-eosin (HE), Nissl, and TdT-mediated dUTP nick end labeling (TUNEL) combined with neuronal nuclear (NEUN) immunofluorescence staining. The cross-targets of SX granules and ICH were obtained using network pharmacology, gene ontology (GO) enrichment analysis, and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analysis were performed. Then, the obtained Hub genes were verified using real-time quantitative polymerase chain reaction (RT-qPCR). The mNSS score was reduced and the duration to remain wire suspended increased in the SX group. In the morphological experiment, SX granules reduced brain tissue damage, neuronal apoptosis, and the number of astrocytes in the ICH rats. Moreover, 607 targets of drug-disease intersection were obtained by network pharmacology, and 10 Hub genes were found. SX granules regulated the expression of HRAS, MAPK3, and STAT3 in ICH condition. In conclusion, SX granules improved behavioral dysfunction, abnormal alterations in brain tissue, and cell morphology in ICH rats, and potential molecular mechanism was linked with the expression of multiple genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...