Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clin Transl Oncol ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177940

ABSTRACT

PURPOSE: The research aimed to evaluate the connection between pre-treatment inflammatory biomarkers and clinical results in advanced esophageal squamous cell carcinoma (ESCC) receiving immune checkpoint inhibitors. MATERIALS AND METHODS: Between 2019 and 2022, we analyzed 354 individuals diagnosed with metastatic ESCC who underwent immunotherapy. The study sought to evaluate the impact of specific inflammatory biomarkers (Neutrophil/Lymphocyte Ratio (NLR), C-reactive protein to albumin ratio (CRP/ALB) and Glasgow Prognostic Score (GPS), Cyclooxygenase-2 (COX-2) inhibitors or steroids usage on the effectiveness and survival outcomes of immunotherapy in advanced ESCC. The research utilized Kaplan‒Meier and Cox regression models alongside propensity score matching for analysis. RESULTS: The findings revealed that elevated pre-treatment NLR (11.0 vs. 14.6 months, p = 0.021) and CRP/ALB (11.4 vs. 14.6 months, p = 0.022) levels were significantly associated with poorer overall survival (OS) outcomes, while the use of steroids did not show a significant difference in OS (15.5 vs. 15.4 months, p = 0.685) between groups. Similarly, no notable disparity in OS was observed between patients treated withCOX-2 inhibitors and those who were not (13.8 vs. 11.0 months, p = 0.054). CONCLUSION: Lower levels of NLR and CRP/ALB prior to treatment were linked to better effectiveness and OS in immunotherapy for advanced ESCC. The study did not identify a significant relationship between OS in patients with esophageal cancer and the use of either steroids or COX-2 inhibitors.

2.
Chest ; 158(3): 1187-1197, 2020 09.
Article in English | MEDLINE | ID: mdl-32304773

ABSTRACT

BACKGROUND: Extreme phenotypes of OSA have not been systematically defined. RESEARCH QUESTION: This study developed objective definitions of extreme phenotypes of OSA by using a multivariate approach. The utility of these definitions for identifying characteristics that confer predisposition toward or protection against OSA is shown in a new prospective sample. STUDY DESIGN AND METHODS: In a large international sample, race-specific liability scores were calculated from a weighted logistic regression that included age, sex, and BMI. Extreme cases were defined as individuals with an apnea-hypopnea index (AHI) ≥ 30 events/hour but low likelihood of OSA based on age, sex, and BMI (liability scores > 90th percentile). Similarly, extreme controls were individuals with an AHI < 5 events/hour but high likelihood of OSA (liability scores < 10th percentile). Definitions were applied to a prospective sample from the Sleep Apnea Global Interdisciplinary Consortium, and differences in photography-based craniofacial and intraoral phenotypes were evaluated. RESULTS: This study included retrospective data from 81,338 individuals. A total of 4,168 extreme cases and 1,432 extreme controls were identified by using liability scores. Extreme cases were younger (43.1 ± 14.7 years), overweight (28.6 ± 6.8 kg/m2), and predominantly female (71.1%). Extreme controls were older (53.8 ± 14.1 years), obese (34.0 ± 8.1 kg/m2), and predominantly male (65.8%). These objective definitions identified 29 extreme cases and 87 extreme controls among 1,424 Sleep Apnea Global Interdisciplinary Consortium participants with photography-based phenotyping. Comparisons suggest that a greater cervicomental angle increases risk for OSA in the absence of clinical risk factors, and smaller facial widths are protective in the presence of clinical risk factors. INTERPRETATION: This objective definition can be applied in sleep centers throughout the world to consistently define OSA extreme phenotypes for future studies on genetic, anatomic, and physiologic pathways to OSA.


Subject(s)
Sleep Apnea, Obstructive/classification , Adult , Age Factors , Aged , Female , Humans , Internationality , Male , Middle Aged , Phenotype , Photography , Retrospective Studies , Risk Factors , Sex Factors , Sleep Apnea, Obstructive/ethnology
3.
Electron. j. biotechnol ; Electron. j. biotechnol;39: 67-73, may. 2019. graf, tab
Article in English | LILACS | ID: biblio-1052039

ABSTRACT

BACKGROUND: The supplementation of betaine, an osmoprotective compatible solute, in the cultivation media has been widely used to protect bacterial cells. To explore the effects of betaine addition on industrial fermentation, Escherichia coli THRD, an L-threonine producer, was used to examine the production of L-threonine with betaine supplementation and the underlying mechanism through which betaine functions was investigated. RESULTS: Betaine supplementation in the medium of E. coli THRD significantly improved L-threonine fermentation parameters. The transcription of zwf and corresponding enzyme activity of glucose-6-phosphate dehydrogenase were significantly promoted by betaine addition, which contributed to an enhanced expression of zwf that provided more nicotinamide adenine dinucleotide phosphate (NADPH) for L-threonine synthesis. In addition, as a result of the betaine addition, the betaine-stimulated expression of enhanced green fluorescent protein (eGFP) under the zwf promoter within a plasmid-based cassette proved to be a transcription-level response of zwf. Finally, the promoter of the phosphoenolpyruvate carboxylase gene ppc in THRD was replaced with that of zwf, while L-threonine fermentation of the new strain was promoted by betaine addition. Conclusions: We reveal a novel mode of betaine that facilitates the microbial production of useful compounds. Betaine supplementation upregulates the expression of zwf and increases the NADPH synthesis, which may be beneficial for the cell growth and thereby promote the production of L-threonine. This finding might be useful for the production of NADPH-dependent amino acids and derivatives in E. coli THRD or other E. coli strains.


Subject(s)
Threonine/metabolism , Betaine/metabolism , Escherichia coli/metabolism , Osmosis , Pentose Phosphate Pathway , Reverse Transcriptase Polymerase Chain Reaction , Escherichia coli/enzymology , Fermentation , Glucosephosphate Dehydrogenase/metabolism , NADP
4.
Electron. j. biotechnol ; Electron. j. biotechnol;33: 46-51, May. 2018. ilus, graf
Article in English | LILACS | ID: biblio-1022928

ABSTRACT

Background: During L-tryptophan production by Escherichia coli, the by-products, acetic acid and NH4 +, accumulate in the fermentation broth, resulting in inhibited cell growth and activity and decreased L-tryptophan production. To improve the L-tryptophan yield and glucose conversion rate, acetic acid and NH4 + were removed under low-temperature vacuum conditions by vacuum scraper concentrator evaporation; the fermentation broth after evaporation was pressed into another fermenter to continue fermentation. To increase the volatilisation rate of acetic acid and NH4 + and reduce damage to bacteria during evaporation, different vacuum evaporation conditions were studied. Results: The optimum operating conditions were as follows: vacuum degree, 720 mm Hg; concentration ratio, 10%; temperature, 60°C; and feeding rate, 300 mL/min. The biomass yield of the control fermentation (CF) and fermentation by vacuum evaporation (VEF) broths was 55.1 g/L and 58.3 g/L at 38 h, respectively, (an increase of 5.8%); the living biomass yield increased from 8.9 (CF) to 10.2 pF (VEF; an increase of 14.6%). L-tryptophan production increased from 50.2 g/L (CF) to 60.2 g/L (VEF) (an increase of 19.9%), and glucose conversion increased from 18.2% (CF) to 19.5% (VEF; an increase of 7.1%). The acetic acid concentrations were 2.74 g/L and 6.70 g/L, and the NH4 + concentrations were 85.3 mmol/L and 130.9 mmol/L in VEF and CF broths, respectively. Conclusions: The acetic acid and NH4 + in the fermentation broth were quickly removed using the vacuum scraper concentrator, which reduced bacterial inhibition, enhanced bacterial activity, and improved the production of L-tryptophan and glucose conversion rate.


Subject(s)
Tryptophan/biosynthesis , Acetic Acid/metabolism , Amino Acids/metabolism , Vacuum , Waste Products , Evaporation , Escherichia coli , Fermentation
5.
Sleep ; 41(3)2018 03 01.
Article in English | MEDLINE | ID: mdl-29315434

ABSTRACT

Study Objectives: A recent study of patients with moderate-severe obstructive sleep apnea (OSA) in Iceland identified three clinical clusters based on symptoms and comorbidities. We sought to verify this finding in a new cohort in Iceland and examine the generalizability of OSA clusters in an international ethnically diverse cohort. Methods: Using data on 972 patients with moderate-severe OSA (apnea-hypopnea index [AHI] ≥ 15 events per hour) recruited from the Sleep Apnea Global Interdisciplinary Consortium (SAGIC), we performed a latent class analysis of 18 self-reported symptom variables, hypertension, cardiovascular disease, and diabetes. Results: The original OSA clusters of disturbed sleep, minimally symptomatic, and excessively sleepy replicated among 215 SAGIC patients from Iceland. These clusters also generalized to 757 patients from five other countries. The three clusters had similar average AHI values in both Iceland and the international samples, suggesting clusters are not driven by OSA severity; differences in age, gender, and body mass index were also generally small. Within the international sample, the three original clusters were expanded to five optimal clusters: three were similar to those in Iceland (labeled disturbed sleep, minimal symptoms, and upper airway symptoms with sleepiness) and two were new, less symptomatic clusters (labeled upper airway symptoms dominant and sleepiness dominant). The five clusters showed differences in demographics and AHI, although all were middle-aged (44.6-54.5 years), obese (30.6-35.9 kg/m2), and had severe OSA (42.0-51.4 events per hour) on average. Conclusions: Results confirm and extend previously identified clinical clusters in OSA. These clusters provide an opportunity for a more personalized approach to the management of OSA.


Subject(s)
Internationality , Sleep Apnea, Obstructive/classification , Sleep Apnea, Obstructive/diagnosis , Adult , Aged , Body Mass Index , Cardiovascular Diseases/classification , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cluster Analysis , Cohort Studies , Comorbidity , Diabetes Mellitus/classification , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Disorders of Excessive Somnolence/classification , Disorders of Excessive Somnolence/diagnosis , Disorders of Excessive Somnolence/epidemiology , Female , Humans , Hypertension/classification , Hypertension/diagnosis , Hypertension/epidemiology , Iceland/epidemiology , Male , Middle Aged , Sleep Apnea, Obstructive/epidemiology
6.
Braz. J. Microbiol. ; 45(4): 1477-1483, Oct.-Dec. 2014. ilus, graf, tab
Article in English | VETINDEX | ID: vti-27527

ABSTRACT

L-lactate is one of main byproducts excreted in to the fermentation medium. To improve L-glutamate production and reduce L-lactate accumulation, L-lactate dehydrogenase-encoding gene ldhA was knocked out from L-glutamate producing strain Corynebacterium glutamicum GDK-9, designated GDK-9ΔldhA. GDK-9ΔldhA produced approximately 10.1% more L-glutamate than the GDK-9, and yielded lower levels of such by-products as α-ketoglutarate, L-lactate and L-alanine. Since dissolved oxygen (DO) is one of main factors affecting L-lactate formation during L-glutamate fermentation, we investigated the effect of ldhA deletion from GDK-9 under different DO conditions. Under both oxygen-deficient and high oxygen conditions, L-glutamate production by GDK-9ΔldhA was not higher than that of the GDK-9. However, under micro-aerobic conditions, GDK-9ΔldhA exhibited 11.61% higher L-glutamate and 58.50% lower L-alanine production than GDK-9. Taken together, it is demonstrated that deletion of ldhA can enhance L-glutamate production and lower the unwanted by-products concentration, especially under micro-aerobic conditions.


Subject(s)
Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/metabolism , Gene Deletion , Glutamic Acid/metabolism , L-Lactate Dehydrogenase/genetics , Lactic Acid/metabolism , Metabolic Engineering , Corynebacterium glutamicum/genetics , Oxygen/metabolism , Sequence Deletion
7.
Braz. j. microbiol ; Braz. j. microbiol;45(4): 1477-1483, Oct.-Dec. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-741303

ABSTRACT

L-lactate is one of main byproducts excreted in to the fermentation medium. To improve L-glutamate production and reduce L-lactate accumulation, L-lactate dehydrogenase-encoding gene ldhA was knocked out from L-glutamate producing strain Corynebacterium glutamicum GDK-9, designated GDK-9ΔldhA. GDK-9ΔldhA produced approximately 10.1% more L-glutamate than the GDK-9, and yielded lower levels of such by-products as α-ketoglutarate, L-lactate and L-alanine. Since dissolved oxygen (DO) is one of main factors affecting L-lactate formation during L-glutamate fermentation, we investigated the effect of ldhA deletion from GDK-9 under different DO conditions. Under both oxygen-deficient and high oxygen conditions, L-glutamate production by GDK-9ΔldhA was not higher than that of the GDK-9. However, under micro-aerobic conditions, GDK-9ΔldhA exhibited 11.61% higher L-glutamate and 58.50% lower L-alanine production than GDK-9. Taken together, it is demonstrated that deletion of ldhA can enhance L-glutamate production and lower the unwanted by-products concentration, especially under micro-aerobic conditions.


Subject(s)
Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/metabolism , Gene Deletion , Glutamic Acid/metabolism , L-Lactate Dehydrogenase/genetics , Lactic Acid/metabolism , Metabolic Engineering , Corynebacterium glutamicum/genetics , Oxygen/metabolism , Sequence Deletion
8.
Braz J Microbiol ; 45(4): 1477-83, 2014.
Article in English | MEDLINE | ID: mdl-25763057

ABSTRACT

L-lactate is one of main byproducts excreted in to the fermentation medium. To improve L-glutamate production and reduce L-lactate accumulation, L-lactate dehydrogenase-encoding gene ldhA was knocked out from L-glutamate producing strain Corynebacterium glutamicum GDK-9, designated GDK-9ΔldhA. GDK-9ΔldhA produced approximately 10.1% more L-glutamate than the GDK-9, and yielded lower levels of such by-products as α-ketoglutarate, L-lactate and L-alanine. Since dissolved oxygen (DO) is one of main factors affecting L-lactate formation during L-glutamate fermentation, we investigated the effect of ldhA deletion from GDK-9 under different DO conditions. Under both oxygen-deficient and high oxygen conditions, L-glutamate production by GDK-9ΔldhA was not higher than that of the GDK-9. However, under micro-aerobic conditions, GDK-9ΔldhA exhibited 11.61% higher L-glutamate and 58.50% lower L-alanine production than GDK-9. Taken together, it is demonstrated that deletion of ldhA can enhance L-glutamate production and lower the unwanted by-products concentration, especially under micro-aerobic conditions.


Subject(s)
Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/metabolism , Gene Deletion , Glutamic Acid/metabolism , L-Lactate Dehydrogenase/genetics , Lactic Acid/metabolism , Metabolic Engineering , Corynebacterium glutamicum/genetics , Oxygen/metabolism , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL