Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.710
Filter
1.
Environ Pollut ; 357: 124467, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950850

ABSTRACT

The 31st FISU Summer World University Games (SWUG) was held in Chengdu, southwestern China, from July 22 to August 8, 2023. A series of control measures were carried out to ensure good air quality during the SWUG, providing an opportunity to investigate the atmospheric behaviors of light-absorbing aerosols under such a substantial disturbance caused by the control measures. To assess the impacts of emission controls on primary pollutants, a field campaign was conducted at a rural site in Chengdu to investigate the characterization of equivalent black carbon (eBC). The changes of eBC concentrations before, during, and after the SWUG were characterized. The sources of eBC were resolved, and the impacts of atmospheric processes on the absorption capacity were also investigated. During the SWUG, the eBC concentration decreased by 12.1 % and 25.3 % compared with those before and after the SWUG. A fossil fuel combustion (eBCff) and a biomass burning (eBCbb) originated eBC were resolved using the aethalometer model. Both eBCff and eBCbb decreased during the SWUG, indicating the effectiveness of control measures. After the SWUG, the influence of biomass burning emissions became more and more significant, and the contribution of brown carbon (BrC) to light absorption at 370-660 nm increased by 52, 19, 7, 6, and 17 % compared to those during the SWUG. As the biomass burning emitted aerosols aged, the absorption Ångström exponent and babs(BrC370nm) decreased gradually, which was mainly due to the photobleaching of the chromophores during the daytime. eBCff was mainly affected by strong wind, while high eBCbb concentration was mainly attributed to the gradual accumulation of biomass-burning emissions near the observation site. The results show the significant reduction of eBC with the implementation of the air pollution mitigation campaign, and provide insights on the impacts of atmospheric processes on BC optical properties during summertime.

2.
Nat Commun ; 15(1): 5774, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982079

ABSTRACT

Vertical transistors, in which the source and drain are aligned vertically and the current flow is normal to the wafer surface, have attracted considerable attention recently. However, the realization of high-density vertical transistors is challenging, and could be largely attributed to the incompatibility between vertical structures and conventional lateral fabrication processes. Here we report a T-shape lamination approach for realizing high-density vertical sidewall transistors, where lateral transistors could be pre-fabricated on planar substrates first and then laminated onto vertical substrates using T-shape stamps, hence overcoming the incompatibility between planar processes and vertical structures. Based on this technique, we vertically stacked 60 MoS2 transistors within a small vertical footprint, corresponding to a device density over 108 cm-2. Furthermore, we demonstrate two approaches for scalable fabrication of vertical sidewall transistor arrays, including simultaneous lamination onto multiple vertical substrates, as well as on the same vertical substrate using multi-cycle layer-by-layer laminations.

3.
World J Gastrointest Surg ; 16(6): 1660-1669, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983352

ABSTRACT

BACKGROUND: Advanced gastric cancer is a common malignancy that is often diagnosed at an advanced stage and is still at risk of recurrence after radical surgical treatment. Chemoradiotherapy, as one of the important treatment methods for gastric cancer, is of great significance for improving the survival rate of patients. However, the tumor recurrence and survival prognosis of gastric cancer patients after radiotherapy and chemotherapy are still uncertain. AIM: To analyze the tumor recurrence after radical radiotherapy and chemotherapy for advanced gastric cancer and provide more in-depth guidance for clinicians. METHODS: A retrospective analysis was performed on 171 patients with gastric cancer who received postoperative adjuvant radiotherapy and chemotherapy in our hospital from 2021 to 2023. The Kaplan-Meier method was used to calculate the recurrence rate and survival rate; the log-rank method was used to analyze the single-factor prognosis; and the Cox model was used to analyze the prognosis associated with multiple factors. RESULTS: The median follow-up time of the whole group was 63 months, and the follow-up rate was 93.6%. Stage II and III patients accounted for 31.0% and 66.7%, respectively. The incidences of Grade 3 and above acute gastrointestinal reactions and hematological adverse reactions were 8.8% and 9.9%, respectively. A total of 166 patients completed the entire chemoradiotherapy regimen, during which no adverse reaction-related deaths occurred. In terms of the recurrence pattern, 17 patients had local recurrence, 29 patients had distant metastasis, and 12 patients had peritoneal implantation metastasis. The 1-year, 3-year, and 5-year overall survival (OS) rates were 83.7%, 66.3%, and 60.0%, respectively. The 1-year, 3-year, and 5-year disease-free survival rates were 75.5%, 62.7%, and 56.5%, respectively. Multivariate analysis revealed that T stage, peripheral nerve invasion, and the lymph node metastasis rate (LNR) were independent prognostic factors for OS. CONCLUSION: Postoperative intensity-modulated radiotherapy combined with chemotherapy for gastric cancer treatment is well tolerated and has acceptable adverse effects, which is beneficial for local tumor control and can improve the long-term survival of patients. The LNR was an independent prognostic factor for OS. For patients with a high risk of local recurrence, postoperative adjuvant chemoradiation should be considered.

4.
J Crohns Colitis ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980753

ABSTRACT

BACKGROUND AND AIMS: Approximately 40% of patients with steroid-refractory acute severe ulcerative colitis (steroid-refractory (SR) ASUC) requires colectomies. Advanced therapies may reduce the short-term colectomy rates in patients with SR ASUC. However, comparative clinical studies evaluating the effectiveness of these rescue therapies are lacking. Therefore, we conducted a network meta-analysis to study the effectiveness of rescue therapies for SR ASUC. METHODS: Six randomized controlled trials and 15 cohort studies including 2,004 patients were analyzed. Rescue drugs included tofacitinib, infliximab with a 5 or 10 mg/kg induction dose at 0, 2, and 6 weeks (IFX and IFX10, respectively), IFX with an accelerated regimen of three 5 mg/kg induction doses timed according to clinical need (accelerated IFX), tacrolimus, cyclosporine (CyA), ustekinumab, and adalimumab. Treatments were compared with a placebo. RESULTS: Tofacitinib (odds ratio [OR]: 0.09 [95% confidence interval [CI]: 0.02-0.52]), accelerated IFX (OR: 0.16 [95% CI: 0.03-0.94]), IFX (OR: 0.2 [95% CI: 0.07-0.58]), and tacrolimus (OR: 0.24 [95% CI: 0.06-0.96]) significantly reduced the short-term colectomy rates compared with placebo. IFX10 and CyA tended to prevent colectomies. However, ustekinumab and adalimumab did not significantly affect the colectomy rates. CONCLUSION: This is the first network meta-analysis to investigate the efficacy of advanced therapies in reducing short-term colectomy rates in patients with SR ASUC. Tofacitinib, accelerated IFX, standard IFX, and tacrolimus significantly reduced the colectomy rates in SR ASUC patients compared with placebo. Thus, advanced therapies should be considered for rescue therapies in patients with SR ASUC.

5.
Ecol Evol ; 14(7): e11589, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979007

ABSTRACT

Beetles have a remote evolutionary history dating back to the Carboniferous, with Mesozoic fossils playing a pivotal role in elucidating the early evolution of extant families. Despite their exceptional preservation in amber, deciphering the systematic positions of Mesozoic trogossitid-like beetles remains challenging. Here, we describe and illustrate a new trogossitid-like lineage from mid-Cretaceous Kachin amber, Foveapeltis rutai Li, Kolibác, Liu & Cai, gen. et sp. nov. Foveapeltis stands out within the Cleroidea due to the presence of a significant large cavity on each hypomeron. While the exact phylogenetic placement of Foveapeltis remains uncertain, we offer a discussion on its potential affinity based on our constrained phylogenetic analyses.

6.
Neurosci Biobehav Rev ; : 105807, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981573

ABSTRACT

The efficacy and acceptability of various non-invasive brain stimulation (NIBS) interventions for autism spectrum disorder remain unclear. We carried out a systematic review for randomized controlled trials (RCTs) regarding NIBS for reducing autistic symptoms (INPLASY202370003). Sixteen articles (N = 709) met the inclusion criteria for network meta-analysis. Effect sizes were reported as standardized mean differences (SMDs) or odds ratios with 95% confidence intervals (CIs). Fourteen active NIBS interventions, including transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation, and transcranial pulse stimulation were analyzed. Only anodal tDCS over the left dorsolateral prefrontal cortex paired with cathodal tDCS over an extracephalic location (atDCS_F3+ctDCS_E) significantly improved autistic symptoms compared to sham controls (SMD = -1.40, 95%CIs = -2.67 to -0.14). None of the NIBS interventions markedly improved social-communication symptoms or restricted/repetitive behaviors in autistic participants. Moreover, no active NIBS interventions exhibited significant dropout rate differences compared to sham controls, and no serious adverse events were reported for any intervention.

7.
J Immunother Cancer ; 12(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977328

ABSTRACT

BACKGROUND: While anti-programmed cell death protein-1 (PD-1) monotherapy has shown effectiveness in treating lung cancer, its response rate is limited to approximately 20%. Recent research suggests that abnormal lipid metabolism in patients with lung adenocarcinoma may hinder the efficacy of anti-PD-1 monotherapy. METHODS: Here, we delved into the patterns of lipid metabolism in patients with The Cancer Genome Atlas (TCGA)-lung adenocarcinoma (LUAD) and their correlation with the immune microenvironment's cellular infiltration characteristics of the tumor. Furthermore, the lipid metabolism score (LMS) system was constructed, and based on the LMS system, we further performed screening for potential agents targeting lipid metabolism. The mechanism of MK1775 was further validated using RNA sequencing, co-culture technology, and in vivo experiments. RESULTS: We developed an LSM system and identified a potential sensitizing agent, MK1775, which targets lipid metabolism and enhances the effects of anti-PD-1 treatment. Our results demonstrate that MK1775 inhibits tumor progression by influencing lipid crosstalk between tumor cells and tumor-associated macrophages and CD8+T cells, thereby increasing the effectiveness of anti-PD-1 treatment. Further, we found that MK1775 inhibited the phosphatidylinositol 3-kinase(PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which on one hand downregulated FASN-mediated synthesis of fatty acids (FAs) to inhibit fatty acid oxidation of tumor-associated macrophages, and on the other hand, promoted IRF-mediated secretion of CXCL10 and CXCL11 to facilitate the infiltration of CD8+ T cells. CONCLUSIONS: These findings emphasize the important role of lipid metabolism in shaping the complex tumor microenvironment. By manipulating the intricate intricacies of lipid metabolism within the tumor microenvironment, we can uncover and develop promising strategies to sensitize immunotherapy, potentially revolutionizing cancer treatment approaches.


Subject(s)
Adenocarcinoma of Lung , Immunotherapy , Lipid Metabolism , Lung Neoplasms , Humans , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/immunology , Immunotherapy/methods , Mice , Animals , Tumor Microenvironment , Cell Line, Tumor
8.
Front Genet ; 15: 1382421, 2024.
Article in English | MEDLINE | ID: mdl-38962454

ABSTRACT

Purpose: It is still unclear whether KEAP1 mutation is detrimental to immunotherapy of lung adenocarcinoma (LUAD) patients, we try to analyse the exact changes in the TME in LUAD patients with KEAP1 mutations and to identify key factors influencing prognosis. Experimental design: A total of 1,029 patients with lung squamous carcinoma (LUSC) or LUAD with data obtained from The Cancer Genome Atlas were included in this study. The TME and OS of patients with LUAD stratified by mutant versus wild-type KEAP1 status were comprehensively measured. Moreover, we classified LUAD patients with KEAP1 mutations into three subtypes, by unsupervised consensus clustering. We further analysed the TME, OS, commutated genes and metabolic pathways of different subgroups. A total of 40 LUAD patients underwent immunotherapy were collected and classified into mutant KEAP1 group and wild-type KEAP1 group. We also conducted immunohistochemical staining in KEAP1-MT groups. Result: Suppressed TME was observed not only in LUAD patients but also in LUSC patients. LUAD patients with mutant KEAP1 underwent immunotherapy had worse PFS than wild-type KEAP1. Unsupervised consensus clustering analysis suggested that the three subtypes of patients exhibited different densities of neutrophil infiltration and had different OS results: cluster 2 patients had significantly higher levels of neutrophils had significantly worse prognoses than those of patients in clusters 1 and 3 and patients with wild-type KEAP1. Univariate and multivariate Cox analyses proved that a high density of neutrophils was significantly associated with worse OS and immunohistochemical staining proved that shorter PFS showed high density of neutrophils. Conclusion: KEAP1 mutation significantly suppresses the tumour immune microenvironment in LUAD patients. LUAD patients with mutant KEAP1 underwent immunotherapy had worse PFS than with wild-type KEAP1. Neutrophils may play an important role in the prognosis of LUAD patients with KEAP1 mutations and may provide a promising therapeutic target.

9.
Inorg Chem ; 63(26): 12073-12080, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946340

ABSTRACT

Luminescent materials typically emit their fluorescence or phosphorescence at a specific wavelength with different excitation energies via the so-called Kasha's rule. If fluorescence or phosphorescence emission via anti-Kasha's rule could be achieved, it will hold great promise for applications in many fields. In this work, we report the synthesis and characterization of new metal-organic halide materials with dual emission of efficient room-temperature phosphorescence and fluorescence, which obey anti-Kasha's rule. Here, three emitting metal-organic halides with formula [ZnX2(bidpe)] (X = Cl for 1, X = Br for 2, X = I for 3, bidpe = 4,4'-bis(imidazol-1-yl)diphenyl ether) were prepared and their photophysical properties were investigated. The complexes exhibit dual emission of fluorescence and phosphorescence via anti-Kasha's rule, and their RTP properties of resultant products are modulated by halide substitution synthesis. DFT calculations indicate that the singlet states exhibit a halide-ligand charge transfer (XLCT) character while the triplet states are dominated by the intraligand π-π* transitions. Furthermore, the multilevel information encryption and anticounterfeiting applications are developed by virtue of anti-Kasha's rule emission.

10.
Anal Methods ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989610

ABSTRACT

Herein, a novel photoelectrochemical (PEC) aptasensor using gold nanoparticles@3,4,9,10-perylene tetracarboxylic (Au@PTCA) Schottky junction as the effective optoelectronic material and lead ion (Pb2+)-G quadruplex structure as the efficient quencher was constructed for the detection of Pb2+ with high sensitivity and excellent selectivity. Au@PTCA Schottky junction, which was proposed by the in situ reduction of Au NPs on the PTCA surface, exhibited a strong unidirectional conductivity, which could generate a significantly enhanced PEC signal compared with the pure PTCA. The Pb2+-G quadruplex structure with a large spatial hindrance effect was formed when the target Pb2+ was present owing to the occurrence of the specific recognition between Pb2+ and its aptamer S1. The formation of a Pb2+-G quadruplex structure effectively quenched the initial signal generated by the Au@PTCA Schottky junction, which was derived from restricted electron transport and light transmission. The obtained prominently decreased PEC signal could achieve the quantitative detection of Pb2+ from 0.5 pM to 500 nM, with a low detection limit of 0.17 pM. The preparation time of this PEC aptasensor was 13 h, and the time for PEC measurement depended on the illumination time, which switched off-on-off for 10 s-20 s-10 s. The study proposed here with high sensitivity and excellent selectivity for Pb2+ analysis offered a novel and reliable tool for environmental monitoring related to heavy metal ions.

11.
Heliyon ; 10(12): e33077, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994107

ABSTRACT

Dysfunction of the blood-brain barrier (BBB) has been increasingly recognised as a critical early event in Alzheimer's disease (AD) pathophysiology. Central to this mechanism is the impaired function of brain endothelial cells (BECs), the primary structural constituents of the BBB, the study of which is imperative for understanding AD pathophysiology. However, the published methods to isolate BECs are time-consuming and have a low success rate. Here, we developed a rapid and streamlined protocol for BEC isolation without using transgenic reporters, flow cytometry, and magnetic beads, which are essential for existing methods. Using this novel protocol, we isolated high-purity BECs from cell clusters of cortical microvessels from wild-type and APPswe/PS1dE9 (APP/PS1, a classical AD model) mice at 2, 4 and 9 months of age. Reduced levels of tight junction proteins Claudin-5 and Zonula Occludens-1, as well as glucose transporter 1, were observed in the isolated cortical microvessels from APP/PS1 mice and amyloid-ß (Aß) oligomer-treated BECs from wild-type mice. Trans-well permeability assay showed increased FITC-dextran leakage in BECs treated with Aß, suggesting impaired BBB permeability. BECs obtained using our novel protocol can undergo various experimental analyses, including immunofluorescence staining, western blotting, real-time PCR, and trans-well permeability assay. In conclusion, our novel protocol represents a reliable and valuable tool for in vitro modelling BBB to study AD-related mechanisms and develop targeted therapeutic strategies.

12.
Front Pharmacol ; 15: 1403966, 2024.
Article in English | MEDLINE | ID: mdl-38994198

ABSTRACT

Background: Voriconazole is primarily metabolized by CYP2C19 and CYP3A4. Drug interactions that affect this pathway can alter its plasma exposures, resulting in untargeted voriconazole concentrations. Case summary: In this case report, we describe the case of a 64-year-old man who was treated for non-Hodgkin's lymphoma with continuous glucocorticoids co-administrated with voriconazole against invasive pulmonary aspergillosis. A decrease in trough concentration (Cmin) of voriconazole was observed and related with co-administration of dexamethasone in the patient carrying the CYP2C19 *1*2 genotype: voriconazole Cmin/dose ratios of 0.018 (0.1 mg L-1/5.7 mg kg-1 day-1), 0.18 (1 mg L-1/5.7 mg kg-1 day-1), and 0.23 (2 mg L-1/8.6 mg kg-1 day-1) at dexamethasone doses of 20, 12.5, and 2.5 mg, respectively. Sub-therapeutic voriconazole Cmin was associated with high- and moderate-dose dexamethasone (20 and 12.5 mg), leading to failure of antifungal treatment. Conclusion: The extent of voriconazole-dexamethasone interaction was determined by the dose of dexamethasone and associated with the CYP2C19 *1*2 genotype. Therapeutic drug monitoring of voriconazole is necessary to avoid clinically relevant interactions for optimal antifungal therapy.

13.
Heliyon ; 10(12): e32595, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988518

ABSTRACT

Objective: To investigate the prevalence of subthreshold depression among Chinese college students and to explore the related factors. Methods: The research subjects were Chinese college students participating in the "2022 Psychology and Behavior Investigation of Chinese Residents (PBICR-2022)". Data on respondents' general characteristics, quality of life, perceived pressure, family communication, perceived social support, self-efficacy, and depression status were gathered. To investigate the association between each variable and the risk of subthreshold depression, statistical analyses, including chi-square tests and rank sum tests were conducted. Furthermore, a binary stepwise logistic regression was employed to establish the regression model of the factors related to subthreshold depression among Chinese college students. Results: A prevalence of subthreshold depression of about 39.7 % was found among the 8934 respondents. Logistic regression analysis revealed that respondents who are female, have chronic diseases, are in debt, experience significant impacts from epidemic control policies, have lower self-assessed quality of life, experience challenges in family communication, perceive lower social support, have lower self-efficacy, and feel higher perceived pressure are more likely to develop subthreshold depression compared to the control group. (P < 0.05). Conclusion: The prevalence rate of subthreshold depression among Chinese college students was found to be approximately 40 %. Female college students suffering from chronic diseases, with households in debt, greatly impacted by epidemic control policies, and experiencing high perceived stress, may be at risk for subthreshold depression among Chinese college students. On the other hand, strong family communication, perceived social support, and self-efficacy were identified as potential protective factors. In order to facilitate timely screening, diagnosis, and treatment of subthreshold depression in Chinese college students, it is crucial for the government, local communities, colleges, and families to prioritize the mental health of college students and implement targeted measures accordingly.

14.
Comput Biol Med ; 179: 108837, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991317

ABSTRACT

Computed tomography (CT) denoising is a challenging task in medical imaging that has garnered considerable attention. Supervised networks require a lot of noisy-clean image pairs, which are always unavailable in clinical settings. Existing self-supervised algorithms for suppressing noise with paired noisy images have limitations, such as ignoring the residual between similar image pairs during training and insufficiently learning the spectrum information of images. In this study, we propose a Residual Image Prior Network (RIP-Net) to sufficiently model the residual between the paired similar noisy images. Our approach offers new insights into the field by addressing the limitations of existing methods. We first establish a mathematical theorem clarifying the non-equivalence between similar-image-based self-supervised learning and supervised learning. It helps us better understand the strengths and limitations of self-supervised learning. Secondly, we introduce a novel regularization term to model a low-frequency residual image prior. This can improve the accuracy and robustness of our model. Finally, we design a well-structured denoising network capable of exploring spectrum information while simultaneously sensing context messages. The network has dual paths for modeling high and low-frequency compositions in the raw noisy image. Additionally, context perception modules capture local and global interactions to produce high-quality images. The comprehensive experiments on preclinical photon-counting CT, clinical brain CT, and low-dose CT datasets, demonstrate that our RIP-Net is superior to other unsupervised denoising methods.

15.
Theranostics ; 14(9): 3470-3485, 2024.
Article in English | MEDLINE | ID: mdl-38948063

ABSTRACT

Background: Sorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC), but acquired resistance during the treatment greatly limits its clinical efficiency. Lipid metabolic disorder plays an important role in hepatocarcinogenesis. However, whether and how lipid metabolic reprogramming regulates sorafenib resistance of HCC cells remains vague. Methods: Sorafenib resistant HCC cells were established by continuous induction. UHPLC-MS/MS, proteomics, and flow cytometry were used to assess the lipid metabolism. ChIP and western blot were used to reflect the interaction of signal transducer and activator of transcription 3 (STAT3) with glycerol-3-phosphate acyltransferase 3 (GPAT3). Gain- and loss-of function studies were applied to explore the mechanism driving sorafenib resistance of HCC. Flow cytometry and CCK8 in vitro, and tumor size in vivo were used to evaluate the sorafenib sensitivity of HCC cells. Results: Our metabolome data revealed a significant enrichment of triglycerides in sorafenib-resistant HCC cells. Further analysis using proteomics and genomics techniques demonstrated a significant increase in the expression of GPAT3 in the sorafenib-resistant groups, which was found to be dependent on the activation of STAT3. The restoration of GPAT3 resensitized HCC cells to sorafenib, while overexpression of GPAT3 led to insensitivity to sorafenib. Mechanistically, GPAT3 upregulation increased triglyceride synthesis, which in turn stimulated the NF-κB/Bcl2 signaling pathway, resulting in apoptosis tolerance upon sorafenib treatment. Furthermore, our in vitro and in vivo studies revealed that pan-GPAT inhibitors effectively reversed sorafenib resistance in HCC cells. Conclusions: Our data demonstrate that GPAT3 elevation in HCC cells reprograms triglyceride metabolism which contributes to acquired resistance to sorafenib, which suggests GPAT3 as a potential target for enhancing the sensitivity of HCC to sorafenib.


Subject(s)
Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Liver Neoplasms , STAT3 Transcription Factor , Sorafenib , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Humans , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Animals , STAT3 Transcription Factor/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Nude , Xenograft Model Antitumor Assays , Lipid Metabolism/drug effects , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects
16.
Front Endocrinol (Lausanne) ; 15: 1385167, 2024.
Article in English | MEDLINE | ID: mdl-38948526

ABSTRACT

Background: Thyroid nodules, increasingly prevalent globally, pose a risk of malignant transformation. Early screening is crucial for management, yet current models focus mainly on ultrasound features. This study explores machine learning for screening using demographic and biochemical indicators. Methods: Analyzing data from 6,102 individuals and 61 variables, we identified 17 key variables to construct models using six machine learning classifiers: Logistic Regression, SVM, Multilayer Perceptron, Random Forest, XGBoost, and LightGBM. Performance was evaluated by accuracy, precision, recall, F1 score, specificity, kappa statistic, and AUC, with internal and external validations assessing generalizability. Shapley values determined feature importance, and Decision Curve Analysis evaluated clinical benefits. Results: Random Forest showed the highest internal validation accuracy (78.3%) and AUC (89.1%). LightGBM demonstrated robust external validation performance. Key factors included age, gender, and urinary iodine levels, with significant clinical benefits at various thresholds. Clinical benefits were observed across various risk thresholds, particularly in ensemble models. Conclusion: Machine learning, particularly ensemble methods, accurately predicts thyroid nodule presence using demographic and biochemical data. This cost-effective strategy offers valuable insights for thyroid health management, aiding in early detection and potentially improving clinical outcomes. These findings enhance our understanding of the key predictors of thyroid nodules and underscore the potential of machine learning in public health applications for early disease screening and prevention.


Subject(s)
Machine Learning , Thyroid Nodule , Thyroid Nodule/diagnosis , Thyroid Nodule/epidemiology , Thyroid Nodule/diagnostic imaging , Humans , Female , Male , China/epidemiology , Cross-Sectional Studies , Middle Aged , Adult , Early Detection of Cancer/methods , Aged , Mass Screening/methods , Ultrasonography/methods
17.
Cancer Lett ; 598: 217095, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964728

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) constitutes a significant global cancer burden, given its high prevalence and associated mortality. Despite substantial progress in survival rates due to the enhanced multidisciplinary approach to treatment, these methods often lead to severe tissue damage, compromised function, and potential toxicity. Thus, there is an imperative need for novel, effective, and minimally damaging treatment modalities. Neoadjuvant treatment, an emerging therapeutic strategy, is designed to reduce tumor size and curtail distant metastasis prior to definitive intervention. Currently, neoadjuvant chemotherapy (NACT) has optimized the treatment approach for a subset of HNSCC patients, yet it has not produced a noticeable enhancement in overall survival (OS). In the contemporary cancer therapeutics landscape, immunotherapy is gaining traction at an accelerated pace. Notably, neoadjuvant immunotherapy (NAIT) has shown promising radiological and pathological responses, coupled with encouraging efficacy in several clinical trials. This potentially paves the way for a myriad of possibilities in treatment de-escalation of HNSCC, which warrants further exploration. This paper reviews the existing strategies and efficacies of neoadjuvant immune checkpoint inhibitors (ICIs), along with potential de-escalation strategies. Furthermore, the challenges encountered in the context of the de-escalation strategies of NAIT are explored. The aim is to inform future research directions that strive to improve the quality of life (QoL) for patients battling HNSCC.

18.
Environ Int ; 190: 108863, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959566

ABSTRACT

Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.

19.
BMC Plant Biol ; 24(1): 632, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970019

ABSTRACT

BACKGROUND: The myeloblastosis (MYB) transcription factor (TF) family is one of the largest and most important TF families in plants, playing an important role in a life cycle and abiotic stress. RESULTS: In this study, 268 Avena sativa MYB (AsMYB) TFs from Avena sativa were identified and named according to their order of location on the chromosomes, respectively. Phylogenetic analysis of the AsMYB and Arabidopsis MYB proteins were performed to determine their homology, the AsMYB1R proteins were classified into 5 subgroups, and the AsMYB2R proteins were classified into 34 subgroups. The conserved domains and gene structure were highly conserved among the subgroups. Eight differentially expressed AsMYB genes were screened in the transcriptome of transcriptional data and validated through RT-qPCR. Three genes in AsMYB2R subgroup, which are related to the shortened growth period, stomatal closure, and nutrient and water transport by PEG-induced drought stress, were investigated in more details. The AsMYB1R subgroup genes LHY and REV 1, together with GST, regulate ROS homeostasis to ensure ROS signal transduction and scavenge excess ROS to avoid oxidative damage. CONCLUSION: The results of this study confirmed that the AsMYB TFs family is involved in the homeostatic regulation of ROS under drought stress. This lays the foundation for further investigating the involvement of the AsMYB TFs family in regulating A. sativa drought response mechanisms.


Subject(s)
Avena , Droughts , Homeostasis , Phylogeny , Plant Proteins , Reactive Oxygen Species , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Avena/genetics , Avena/metabolism , Gene Expression Regulation, Plant , Polyethylene Glycols/pharmacology , Multigene Family , Stress, Physiological/genetics , Genome-Wide Association Study , Genome, Plant
20.
Adv Sci (Weinh) ; : e2405050, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973148

ABSTRACT

Transition metal disulfide compounds (TMDCs) emerges as the promising candidate for new-generation flexible (opto-)electronic device fabrication. However, the harsh growth condition of TMDCs results in the necessity of using hard dielectric substrates, and thus the additional transfer process is essential but still challenging. Here, an efficient strategy for preparation and easy separation-transfer of high-uniform and quality-enhanced MoS2 via the precursor pre-annealing on the designed graphene inserting layer is demonstrated. Based on the novel strategy, it achieves the intact separation and transfer of a 2-inch MoS2 array onto the flexible resin. It reveals that the graphene inserting layer not only enhances MoS2 quality but also decreases interfacial adhesion for easy separation-transfer, which achieves a high yield of ≈99.83%. The theoretical calculations show that the chemical bonding formation at the growth interface has been eliminated by graphene. The separable graphene serves as a photocarrier transportation channel, making a largely enhanced responsivity up to 6.86 mA W-1, and the photodetector array also qualifies for imaging featured with high contrast. The flexible device exhibits high bending stability, which preserves almost 100% of initial performance after 5000 cycles. The proposed novel TMDCs growth and separation-transfer strategy lightens their significance for advances in curved and wearable (opto-)electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...