Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Transgenic Res ; 30(1): 91-104, 2021 02.
Article in English | MEDLINE | ID: mdl-33481207

ABSTRACT

The goal of this study is to establish a Cre/loxP rat resource for conditional and physiologically predictive rat models of human diseases. The laboratory rat (R. norvegicus) is a central experimental animal in several fields of biomedical research, such as cardiovascular diseases, aging, infectious diseases, autoimmunity, cancer models, transplantation biology, inflammation, cancer risk assessment, industrial toxicology, pharmacology, behavioral and addiction studies, and neurobiology. Up till recently, the ability of creating genetically modified rats has been limited compared to that in the mouse mainly due to lack of genetic manipulation tools and technologies in the rat. Recent advances in nucleases, such as CRISPR/Cas9 (clustered regularly-interspaced short palindromic repeats/CRISPR associated protein 9), as well as TARGATT™ integrase system enables fast, efficient and site-specific introduction of exogenous genetic elements into the rat genome. Here, we report the generation of a collection of tissue-specific, inducible transgenic Cre rats as tool models using TARGATT™, CRISPR/Cas9 and random transgenic approach. More specifically, we generated Cre driver rat models that allow controlled gene expression or knockout (conditional models) both temporally and spatially through the Cre-ERT2/loxP system. A total of 10 Cre rat lines and one Cre reporter/test line were generated, including eight (8) Cre lines for neural specific and two (2) lines for cardiovascular specific Cre expression. All of these lines have been deposited with the Rat Resource and Research Center and provide a much-needed resource for the bio-medical community who employ rat models for their studies of human diseases.


Subject(s)
CRISPR-Cas Systems/genetics , Disease Models, Animal , Genetic Diseases, Inborn/genetics , Integrases/genetics , Aging/genetics , Animals , Autoimmunity/genetics , Cardiovascular Diseases/genetics , Communicable Diseases/genetics , Genetic Diseases, Inborn/therapy , Humans , Inflammation/genetics , Neoplasms/genetics , Rats , Transplantation
2.
Methods Mol Biol ; 2066: 35-46, 2020.
Article in English | MEDLINE | ID: mdl-31512205

ABSTRACT

Transgenic technology allows a gene of interest to be introduced into the genome of a laboratory animal and provides an extremely powerful tool to dissect the molecular mechanisms of disease. Transgenic mouse models made by microinjection of DNA into zygotic pronuclei, in particular, have been widely used by the genetics community for over 35 years. However, up till 5 years ago, it remained a rather crude approach: injected sequences randomly insert in multiple copies as concatemers, and they can be mutagenic and have variable, ectopic, or silenced expression depending on the site of integration, a phenomenon called position effects. As a result, multiple lines are required in order to confirm appropriate transgene expression. This can be partially overcome by flanking transgenes with insulator sequences to protect the transgene from influence of surrounding regulatory elements. Large (<300 kb) BAC-based transgenic vectors have also been shown to be more resistant to position effects. However, animals carrying extra copies of fairly large regions of the genome could have unpredictable phenotypes.These problems can be overcome by targeting the transgene to a specific chromosomal locus via homologous recombination in embryonic stem (ES) cells. However, this method is significantly more laborious and time consuming, as it involves creation of modified ES cells and mouse chimeras, as well as eventual germline transmission of the transgene.Here, I describe an integrase-based approach, trademarked as "TARGATT™" (target attP), to produce site-specific transgenic mice via pronuclear microinjection, whereby an intact single-copy transgene can be inserted into predetermined chromosomal loci with high efficiency (up to 40%), and faithfully transmitted through generations. This system allows high-level global transgene expression or tissue-specific expression depending on the promoter used, or inducible expression such as induced by tetracycline or doxycycline. Using this approach, site-specific transgenic mice can be generated as fast as in 3 months. The technique presented here greatly facilitates murine transgenesis and precise structure/function dissection of mammalian gene function and regulation in vivo.


Subject(s)
Cell Nucleus/genetics , DNA/genetics , Gene Transfer Techniques , Mice, Transgenic/genetics , Animals , Attachment Sites, Microbiological , Embryonic Stem Cells/cytology , Gene Targeting , Genome/genetics , Homologous Recombination/genetics , Integrases/genetics , Mice , Microinjections , Promoter Regions, Genetic , Transgenes/genetics
3.
Sci Rep ; 9(1): 16838, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727959

ABSTRACT

Hemophilia A is a monogenic disease with a blood clotting factor VIII (FVIII) deficiency caused by mutation in the factor VIII (F8) gene. Current and emerging treatments such as FVIII protein injection and gene therapies via AAV-delivered F8 transgene in an episome are costly and nonpermanent. Here, we describe a CRISPR/Cas9-based in vivo genome editing method, combined with non-homologous end joining, enabling permanent chromosomal integration of a modified human B domain deleted-F8 (BDD-F8) at the albumin (Alb) locus in liver cells. To test the approach in mice, C57BL/6 mice received tail vein injections of two vectors, AAV8-SaCas9-gRNA, targeting Alb intron 13, and AAV8-BDD-F8. This resulted in BDD-F8 insertion at the Alb locus and FVIII protein expression in the liver of vector-, but not vehicle-, treated mice. Using this approach in hemophilic mice, BDD-F8 was expressed in liver cells as functional human FVIII, leading to increased plasma levels of FVIII and restoration of blood clotting properties in a dose-dependent manor for at least 7 months, with no detectable liver toxicity or meaningful off-target effects. Based on these findings, our BDD-F8 genome editing approach may offer an efficacious, long-term and safe treatment for patients with hemophilia A.


Subject(s)
Dependovirus/genetics , Factor VIII/genetics , Gene Editing/methods , Hemophilia A/therapy , Albumins/genetics , Animals , CRISPR-Cas Systems , Disease Models, Animal , Factor VIII/chemistry , Genetic Therapy , Genetic Vectors/administration & dosage , Hemophilia A/genetics , Humans , Mice , Mice, Inbred C57BL , Protein Domains , Treatment Outcome
4.
PLoS One ; 14(7): e0219842, 2019.
Article in English | MEDLINE | ID: mdl-31344144

ABSTRACT

Mammalian cell expression systems are the most commonly used platforms for producing biotherapeutic proteins. However, development of recombinant mammalian cell lines is often hindered by the unstable and variable transgene expression associated with random integration. We have developed an efficient strategy for site-specific integration of genes of interest (GOIs). This method enables rapid and precise insertion of a gene expression cassette at defined loci in mammalian cells, resulting in homogeneous transgene expression. We identified the Hipp11 (H11) gene as a "safe harbor" locus for gene knock-in in CHO-S cells. Using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 mediated homologous recombination, we knocked in a DNA cassette (the landing pad) that includes a pair of PhiC31 bacteriophage attP sites and genes facilitating integrase-based GOI integration. A master cell line, with the landing pad inserted correctly in the H11 locus, was established. This master cell line was used for site-specific, irreversible recombination, catalyzed by PhiC31 integrase. Using this system, an integration efficiency of 97.7% was achieved with green fluorescent protein (GFP) after selection. The system was then further validated in HEK293T cells, using an analogous protocol to insert the GFP gene at the ROSA26 locus, resulting in 90.7% GFP-positive cells after selection. In comparison, random insertion yielded 0.68% and 1.32% GFP-positive cells in the CHO-S and HEK293T cells, respectively. Taken together, these findings demonstrated an accurate and effective protocol for generating recombinant cell lines to provide consistent protein production. Its likely broad applicability was illustrated here in two cell lines, CHO-S and HEK293T, using two different genomic loci as integration sites. Thus, the system is potentially valuable for biomanufacturing therapeutic proteins.


Subject(s)
Gene Knock-In Techniques/methods , Green Fluorescent Proteins/genetics , Integrases/metabolism , Recombinant Proteins/metabolism , Transgenes , Animals , CHO Cells , CRISPR-Cas Systems , Cricetulus , Gene Expression , Genetic Loci , Green Fluorescent Proteins/metabolism , HEK293 Cells , Homologous Recombination , Humans
5.
Methods Mol Biol ; 1874: 71-86, 2019.
Article in English | MEDLINE | ID: mdl-30353508

ABSTRACT

The discovery of new gene editing tools in the past several years has moved the transgenic field to a new level. The traditional random transgenesis method by pronuclear microinjection has been largely replaced by targeted or site-specific transgenic technologies without the need of homologous recombination in embryonic stem (ES) cells. In this chapter, I describe detailed protocols of an integrase-based approach, trademarked as "TARGATT™" (target attP), to produce site-specific transgenic mice via pronuclear microinjection, whereby an intact single-copy transgene can be inserted into a predetermined chromosomal locus with high efficiency (up to 40%), and faithfully transmitted through generations. This system allows high-level global transgene expression or tissue-specific expression depending on the promoter used, or inducible expression such as induced by tetracycline or doxycycline. Using this approach, site-specific transgenic mice can be generated as fast as in 3 months. The technique presented here greatly facilitates murine transgenesis and precise structure/function dissection of mammalian gene function and regulation in vivo.


Subject(s)
Cell Nucleus/genetics , Gene Editing/methods , Integrases/metabolism , Mice, Transgenic/growth & development , Animals , Attachment Sites, Microbiological , Cells, Cultured , Embryonic Stem Cells , Female , Male , Mice , Mice, Transgenic/genetics , Microinjections , Organ Specificity/drug effects , Transgenes
6.
Transgenic Res ; 26(6): 715-726, 2017 12.
Article in English | MEDLINE | ID: mdl-29094286

ABSTRACT

Genome editing is a powerful technology that can efficiently alter the genome of organisms to achieve targeted modification of endogenous genes and targeted integration of exogenous genes. Current genome-editing tools mainly include ZFN, TALEN and CRISPR/Cas9, which have been successfully applied to all species tested including zebrafish, humans, mice, rats, monkeys, pigs, cattle, sheep, goats and others. The application of genome editing has quickly swept through the entire biomedical field, including livestock breeding. Traditional livestock breeding is associated with rate limiting issues such as long breeding cycle and limitations of genetic resources. Genome editing tools offer solutions to these problems at affordable costs. Generation of gene-edited livestock with improved traits has proven feasible and valuable. For example, the CD163 gene-edited pig is resistant to porcine reproductive and respiratory syndrome (PRRS, also referred to as "blue ear disease"), and a SP110 gene knock-in cow less susceptible to tuberculosis. Given the high efficiency and low cost of genome editing tools, particularly CRISPR/Cas9, it is foreseeable that a significant number of genome edited livestock animals will be produced in the near future; hence it is imperative to comprehensively evaluate the pros and cons they will bring to the livestock breeding industry. Only with these considerations in mind, we will be able to fully take the advantage of the genome editing era in livestock breeding.


Subject(s)
Animals, Genetically Modified , Gene Editing , Livestock/genetics , Selective Breeding/genetics , Animals , China , European Union , Genetic Engineering/legislation & jurisprudence , Genome , Housing, Animal , United States
7.
Sci Rep ; 5: 14253, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26381350

ABSTRACT

Transgenic pigs play an important role in producing higher quality food in agriculture and improving human health when used as animal models for various human diseases in biomedicine. Production of transgenic pigs, however, is a lengthy and inefficient process that hinders research using pig models. Recent applications of the CRISPR/Cas9 system for generating site-specific gene knockout/knockin models, including a knockout pig model, have significantly accelerated the animal model field. However, a knockin pig model containing a site-specific transgene insertion that can be passed on to its offspring remains lacking. Here, we describe for the first time the generation of a site-specific knockin pig model using a combination of CRISPR/Cas9 and somatic cell nuclear transfer. We also report a new genomic "safe harbor" locus, named pH11, which enables stable and robust transgene expression. Our results indicate that our CRISPR/Cas9 knockin system allows highly efficient gene insertion at the pH11 locus of up to 54% using drug selection and 6% without drug selection. We successfully inserted a gene fragment larger than 9 kb at the pH11 locus using the CRISPR/Cas9 system. Our data also confirm that the gene inserted into the pH11 locus is highly expressed in cells, embryos and animals.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Knock-In Techniques , Genetic Loci , Transgenes , Animals , Animals, Genetically Modified , Cell Line , Fibroblasts , Gene Expression , Gene Order , Gene Targeting , Genes, Reporter , Genetic Vectors/genetics , Mutagenesis, Insertional , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...