Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Chinese Pharmacological Bulletin ; (12): 476-483, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013579

ABSTRACT

Aim To evaluate the hypolipidemic effect of the total phenylpropanoid glycosides extracted from Ligustrum robustum (Roxb.) Blume (LRTPG) on hyperlipidemic golden hamsters and explore its regulatory effect on intestinal flora. Methods Sixty hamsters were randomly divided into a control group, a model group, a positive drug group, LRTPG-L group, LRTPG-M group, and LRTPG-H group. After the successful induction of the model by high-fat diet, the animals were continuously administered for four weeks, and their blood lipids and liver lipids were detected. The formed feces from the colorectal region of the hamsters in the control group, model group and LRTPG-H group were collected for 16S rDNA sequencing. Results LRTPG reduced serum TG, TC, LDL-C and liver TG, TC concentrations significantly in hyperlipidemic hamsters. The results of the intestinal microbiota sequencing showed that compared to the control group, LRTPG significantly decreased the relative abundance of the phylum Firmicutes and increased the relative abundance of the phylum Bacteroidetes and Verrucomicrobia (P < 0.01) at the phylum level. At the family level, LRTPG significantly increased the relative abundance of Christensenellaceae, Peptococcaceae, and Verrucomicrobiaceae (P < 0.05 or P < 0.01). At the genus level, LRTPG significantly increased the relative abundance of Oscillospira, Oscillibacter, Flavonifractor and Akkermansiaceae (P < 0.05 or P < 0.01). These changes in the flora were beneficial to the hypolipidemic effect of LRTPG. Conclusion LRTPG may exert its hypolipidemic effect by improving the intestinal flora disorder caused by a high-fat diet in golden hamsters.

2.
Pharmacogn Mag ; 12(45): 80-3, 2016.
Article in English | MEDLINE | ID: mdl-27019565

ABSTRACT

BACKGROUND: In traditional Chinese medicine, Atractylodis rhizoma is the dried rhizome of Atractylodes lancea (Thunb.) DC. or Atractylodes chinensis (DC.) Koidz. After being processed, the dryness of A. rhizoma decreased, and the function of tonifying spleen increased. Therefore, the processed A. rhizoma is the best choice of clinical application. As the main active components, polyethylene alkynes exhibits various desirable pharmacological effects including anti-inflammatory, anti-bacterial and anti-arrhythmia activity. However, there is no report on the pharmacokinetic comparisons of atractylodin, one of polyethylene alkynes, in bio-samples after oral administration of crude and processed A. rhizoma until now. The in vivo study of active components of A. rhizoma would be necessary and helpful for clinical application and clarification of processing principle. OBJECTIVE: To compare the pharmacokinetic parameters of atractylodin after oral administration of crude and processed A. rhizoma, and clarify the processing principle of A. rhizoma. MATERIALS AND METHODS: Plasma concentrations of atractylodin in rats were determined by reversed-phase high-performance liquid chromatogram and the main pharmacokinetic parameters were estimated with Drug and Statistics 2.0 Software Package (Chinese Pharmacological Society, Shanghai, China). RESULTS: The AUC0-t, AUC0→∞, Tmax, and Cmax of processed A. rhizoma were increased significantly (P < 0.05) compared with that in crude A. rhizoma after using Student's t-test. CONCLUSIONS: Processing A. rhizoma with wheat bran by stir-frying can promote and accelerate the absorption of atractylodin. SUMMARY: In this paper, a RP-HPLC method with UV detection for quantification of atractylodin (a main active component in Atractylodis Rhizoma) in rat plasma has been developed and applied to a preliminary pharmacokinetic study of atractylodin after oral administration of crude and processed Atractylodis Rhizoma respectively. The result indicates that processing Atractylodis Rhizoma with wheat-bran can promote and accelerate the absorption of atractylodin.

SELECTION OF CITATIONS
SEARCH DETAIL
...