Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37765991

ABSTRACT

YBa2Cu3O6+x (YBCO) cuprates are semiconductive when oxygen depleted (x < 0.5). They can be used for uncooled thermal detection in the near-infrared: (i) low temperature deposition on silicon substrates, leading to an amorphous phase (a-YBCO); (ii) pyroelectric properties exploited in thermal detectors offering both low noise and fast response above 1 MHz. However, a-YBCO films exhibit a small direct current (DC) electrical conductivity, with strong non-linearity of current-voltage plots. Calcium doping is well known for improving the transport properties of oxygen-rich YBCO films (x > 0.7). In this paper, we consider the performances of pyroelectric detectors made from calcium-doped (10 at. %) and undoped a-YBCO films. First, the surface microstructure, composition, and DC electrical properties of a-Y0.9Ca0.1Ba2Cu3O6+x films were investigated; then devices were tested at 850 nm wavelength and results were analyzed with an analytical model. A lower DC conductivity was measured for the calcium-doped material, which exhibited a slightly rougher surface, with copper-rich precipitates. The calcium-doped device exhibited a higher specific detectivity (D*=7.5×107 cm·Hz/W at 100 kHz) than the undoped device. Moreover, a shorter thermal time constant (<8 ns) was inferred as compared to the undoped device and commercially available pyroelectric sensors, thus paving the way to significant improvements for fast infrared imaging applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...