Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 32(3): 937-47, 1993 Jan 26.
Article in English | MEDLINE | ID: mdl-8422397

ABSTRACT

Potential advantages of C2-symmetric inhibitors designed for the symmetric HIV-1 protease include high selectivity, potency, stability, and bioavailability. Pseudo-C2-symmetric monools and C2-symmetric diols, containing central hydroxymethylene and (R,R)-dihydroxyethylene moieties flanked by a variety of hydrophobic P1/P1' side chains, were studied as HIV-1 protease inhibitors. The monools and diols were synthesized in 8-10 steps from D-(+)-arabitol and D-(+)-mannitol, respectively. Monools with ethyl or isobutyl P1/P1' side chains were weak inhibitors of recombinant HIV-1 protease (Ki > 10 microM), while benzyl P1/P1' side chains afforded a moderately potent inhibitor (apparent Ki = 230 nM). Diols were 100-10,000x more potent than analogous monools, and a wider range of P1/P1' side chains led to potent inhibition. Both classes of compounds exhibited lower apparent Ki values under high-salt conditions. Surprisingly, monool and diol HIV-1 protease inhibitors were potent inhibitors of porcine pepsin, a prototypical asymmetric monomeric aspartic protease. These results were evaluated in the context of the pseudosymmetric structure of monomeric aspartic proteases and their evolutionary kinship with the retroviral proteases. The X-ray crystal structure of HIV-1 protease complexed with a symmetric diol was determined at 2.6 A. Contrary to expectations, the diol binds the protease asymmetrically and exhibits 2-fold disorder in the electron density map. Molecular dynamics simulations were conducted beginning with asymmetric and symmetric HIV-1 protease/inhibitor model complexes. A more stable trajectory resulted from the asymmetric complex, in agreement with the observed asymmetric binding mode. A simple four-point model was used to argue more generally that van der Waals and electrostatic force fields can commonly lead to an asymmetric association between symmetric molecules.


Subject(s)
Dipeptides/pharmacology , Glycols/pharmacology , HIV Protease Inhibitors/pharmacology , HIV Protease/drug effects , HIV-1/enzymology , Alcohols/chemistry , Alcohols/metabolism , Dipeptides/chemical synthesis , Dipeptides/chemistry , Dipeptides/metabolism , Glycols/chemical synthesis , Glycols/metabolism , HIV Protease/metabolism , HIV Protease Inhibitors/chemical synthesis , HIV Protease Inhibitors/metabolism , Hydrogen Bonding , Models, Molecular , Pepsin A/antagonists & inhibitors , Protein Conformation , Recombinant Proteins/metabolism , Sensitivity and Specificity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...