Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1151073, 2023.
Article in English | MEDLINE | ID: mdl-37213273

ABSTRACT

Introduction: Metastatic spinal cord compression (MSCC) is a disastrous complication of advanced malignancy. A deep learning (DL) algorithm for MSCC classification on CT could expedite timely diagnosis. In this study, we externally test a DL algorithm for MSCC classification on CT and compare with radiologist assessment. Methods: Retrospective collection of CT and corresponding MRI from patients with suspected MSCC was conducted from September 2007 to September 2020. Exclusion criteria were scans with instrumentation, no intravenous contrast, motion artefacts and non-thoracic coverage. Internal CT dataset split was 84% for training/validation and 16% for testing. An external test set was also utilised. Internal training/validation sets were labelled by radiologists with spine imaging specialization (6 and 11-years post-board certification) and were used to further develop a DL algorithm for MSCC classification. The spine imaging specialist (11-years expertise) labelled the test sets (reference standard). For evaluation of DL algorithm performance, internal and external test data were independently reviewed by four radiologists: two spine specialists (Rad1 and Rad2, 7 and 5-years post-board certification, respectively) and two oncological imaging specialists (Rad3 and Rad4, 3 and 5-years post-board certification, respectively). DL model performance was also compared against the CT report issued by the radiologist in a real clinical setting. Inter-rater agreement (Gwet's kappa) and sensitivity/specificity/AUCs were calculated. Results: Overall, 420 CT scans were evaluated (225 patients, mean age=60 ± 11.9[SD]); 354(84%) CTs for training/validation and 66(16%) CTs for internal testing. The DL algorithm showed high inter-rater agreement for three-class MSCC grading with kappas of 0.872 (p<0.001) and 0.844 (p<0.001) on internal and external testing, respectively. On internal testing DL algorithm inter-rater agreement (κ=0.872) was superior to Rad 2 (κ=0.795) and Rad 3 (κ=0.724) (both p<0.001). DL algorithm kappa of 0.844 on external testing was superior to Rad 3 (κ=0.721) (p<0.001). CT report classification of high-grade MSCC disease was poor with only slight inter-rater agreement (κ=0.027) and low sensitivity (44.0), relative to the DL algorithm with almost-perfect inter-rater agreement (κ=0.813) and high sensitivity (94.0) (p<0.001). Conclusion: Deep learning algorithm for metastatic spinal cord compression on CT showed superior performance to the CT report issued by experienced radiologists and could aid earlier diagnosis.

2.
Eur Spine J ; 32(11): 3815-3824, 2023 11.
Article in English | MEDLINE | ID: mdl-37093263

ABSTRACT

PURPOSE: To develop a deep learning (DL) model for epidural spinal cord compression (ESCC) on CT, which will aid earlier ESCC diagnosis for less experienced clinicians. METHODS: We retrospectively collected CT and MRI data from adult patients with suspected ESCC at a tertiary referral institute from 2007 till 2020. A total of 183 patients were used for training/validation of the DL model. A separate test set of 40 patients was used for DL model evaluation and comprised 60 staging CT and matched MRI scans performed with an interval of up to 2 months. DL model performance was compared to eight readers: one musculoskeletal radiologist, two body radiologists, one spine surgeon, and four trainee spine surgeons. Diagnostic performance was evaluated using inter-rater agreement, sensitivity, specificity and AUC. RESULTS: Overall, 3115 axial CT slices were assessed. The DL model showed high kappa of 0.872 for normal, low and high-grade ESCC (trichotomous), which was superior compared to a body radiologist (R4, κ = 0.667) and all four trainee spine surgeons (κ range = 0.625-0.838)(all p < 0.001). In addition, for dichotomous normal versus any grade of ESCC detection, the DL model showed high kappa (κ = 0.879), sensitivity (91.82), specificity (92.01) and AUC (0.919), with the latter AUC superior to all readers (AUC range = 0.732-0.859, all p < 0.001). CONCLUSION: A deep learning model for the objective assessment of ESCC on CT had comparable or superior performance to radiologists and spine surgeons. Earlier diagnosis of ESCC on CT could reduce treatment delays, which are associated with poor outcomes, increased costs, and reduced survival.


Subject(s)
Deep Learning , Spinal Cord Compression , Adult , Humans , Spinal Cord Compression/diagnostic imaging , Spinal Cord Compression/surgery , Retrospective Studies , Spine , Tomography, X-Ray Computed/methods
3.
Cancers (Basel) ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35804990

ABSTRACT

Background: Metastatic epidural spinal cord compression (MESCC) is a disastrous complication of advanced malignancy. Deep learning (DL) models for automatic MESCC classification on staging CT were developed to aid earlier diagnosis. Methods: This retrospective study included 444 CT staging studies from 185 patients with suspected MESCC who underwent MRI spine studies within 60 days of the CT studies. The DL model training/validation dataset consisted of 316/358 (88%) and the test set of 42/358 (12%) CT studies. Training/validation and test datasets were labeled in consensus by two subspecialized radiologists (6 and 11-years-experience) using the MRI studies as the reference standard. Test sets were labeled by the developed DL models and four radiologists (2−7 years of experience) for comparison. Results: DL models showed almost-perfect interobserver agreement for classification of CT spine images into normal, low, and high-grade MESCC, with kappas ranging from 0.873−0.911 (p < 0.001). The DL models (lowest κ = 0.873, 95% CI 0.858−0.887) also showed superior interobserver agreement compared to two of the four radiologists for three-class classification, including a specialist (κ = 0.820, 95% CI 0.803−0.837) and general radiologist (κ = 0.726, 95% CI 0.706−0.747), both p < 0.001. Conclusion: DL models for the MESCC classification on a CT showed comparable to superior interobserver agreement to radiologists and could be used to aid earlier diagnosis.

4.
Radiology ; 305(1): 160-166, 2022 10.
Article in English | MEDLINE | ID: mdl-35699577

ABSTRACT

Background Lumbar spine MRI studies are widely used for back pain assessment. Interpretation involves grading lumbar spinal stenosis, which is repetitive and time consuming. Deep learning (DL) could provide faster and more consistent interpretation. Purpose To assess the speed and interobserver agreement of radiologists for reporting lumbar spinal stenosis with and without DL assistance. Materials and Methods In this retrospective study, a DL model designed to assist radiologists in the interpretation of spinal canal, lateral recess, and neural foraminal stenoses on lumbar spine MRI scans was used. Randomly selected lumbar spine MRI studies obtained in patients with back pain who were 18 years and older over a 3-year period, from September 2015 to September 2018, were included in an internal test data set. Studies with instrumentation and scoliosis were excluded. Eight radiologists, each with 2-13 years of experience in spine MRI interpretation, reviewed studies with and without DL model assistance with a 1-month washout period. Time to diagnosis (in seconds) and interobserver agreement (using Gwet κ) were assessed for stenosis grading for each radiologist with and without the DL model and compared with test data set labels provided by an external musculoskeletal radiologist (with 32 years of experience) as the reference standard. Results Overall, 444 images in 25 patients (mean age, 51 years ± 20 [SD]; 14 women) were evaluated in a test data set. DL-assisted radiologists had a reduced interpretation time per spine MRI study, from a mean of 124-274 seconds (SD, 25-88 seconds) to 47-71 seconds (SD, 24-29 seconds) (P < .001). DL-assisted radiologists had either superior or equivalent interobserver agreement for all stenosis gradings compared with unassisted radiologists. DL-assisted general and in-training radiologists improved their interobserver agreement for four-class neural foraminal stenosis, with κ values of 0.71 and 0.70 (with DL) versus 0.39 and 0.39 (without DL), respectively (both P < .001). Conclusion Radiologists who were assisted by deep learning for interpretation of lumbar spinal stenosis on MRI scans showed a marked reduction in reporting time and superior or equivalent interobserver agreement for all stenosis gradings compared with radiologists who were unassisted by deep learning. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Hayashi in this issue.


Subject(s)
Deep Learning , Spinal Stenosis , Constriction, Pathologic , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Magnetic Resonance Imaging/methods , Middle Aged , Retrospective Studies , Spinal Canal , Spinal Stenosis/diagnostic imaging
7.
BMJ Case Rep ; 20182018 Apr 19.
Article in English | MEDLINE | ID: mdl-29674403

ABSTRACT

A 77-year-old man was admitted with a relapse of antineutrophil cytoplasmic antibody-positive vasculitis with pulmonary involvement and acute kidney injury. There was a background of pulmonary fibrosis (non-specific interstitial pneumonia type pattern) and superadded pulmonary haemorrhage, acute pulmonary oedema and sepsis. The patient was intubated for 4 days and remained dependent on high flow oxygen and continuous positive airway pressure after extubation. A chest radiograph performed 2 weeks after extubation demonstrated unexpected, extensive pneumomediastinum and subcutaneous emphysema. This was confirmed on CT which raised the possibility of a tracheal defect at the level of the prior endotracheal tube cuff position. Tracheal injury was considered clinically unlikely due to the considerable interval since extubation and a short, uneventful intubation period. The cardiothoracic team recommended a diagnostic bronchoscopy but this was felt too high risk by the clinical team. The cause of pneumomediastinum and subcutaneous emphysema remained indeterminate.


Subject(s)
Airway Extubation/adverse effects , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Mediastinal Emphysema , Respiration, Artificial/methods , Subcutaneous Emphysema/etiology , Trachea , Aged , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/complications , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/physiopathology , Clinical Decision-Making , Humans , Male , Mediastinal Emphysema/diagnostic imaging , Mediastinal Emphysema/etiology , Patient Care Management , Pulmonary Edema/diagnosis , Pulmonary Edema/etiology , Pulmonary Fibrosis/diagnosis , Pulmonary Fibrosis/etiology , Radiography, Thoracic/methods , Sepsis/diagnosis , Sepsis/etiology , Tomography, X-Ray Computed/methods , Trachea/diagnostic imaging , Trachea/injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...