Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasound J ; 16(1): 32, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874675

ABSTRACT

BACKGROUND: Joint access is essential for arthrocentesis, or joint aspiration of fluids. Joint treatments that are not performed properly can result in avoidable patient issues such as damage to the muscles, tendons, and blood vessels surrounding the joint. The use of ultrasound has become the gold standard for this procedure and proven to be a support in the skill learning process. However, success with this equipment, particularly in small joints like the wrist, depends on a clinician's capacity to recognize the crucial landmarks that guide these procedures. Prior to executing on a real patient, task trainers have proven to be an effective way for doctors to practice and prepare for procedures. However, shortcomings of current solutions include high purchase costs, incompatibility with ultrasound imaging, and low reusability. In addition, since this is a procedure that is not performed frequently, there may not be space or resources available in healthcare facilities to accommodate one at the point of care. This study aimed to close the existing gap by developing a DIY ultrasound compatible task trainer for wrist joint access training. RESULTS: We developed a novel ultrasound compatible wrist joint model that can be made from sustainable materials and reusable parts, thus reducing the costs for acquisition and environmental impact. Our model, which was produced utilizing small-batch production methods, is made up of 3D-printed bones enclosed in an ultrasound-compatible gelatin mixture. It can be easily remade after each practice session, removing needle tracks that are visible under ultrasound for conventional phantoms. The ultrasonic properties of this model were tested through pixel brightness analysis and visual inspection of simulated anatomical structures. CONCLUSION: Our results report the advantages and limitations of the proposed model regarding production, practice, and ultrasound compatibility. While future work entails the transfer to patients of the same skill, this reusable and replicable model has proven, when presented to experts, to be successful in representing the physical characteristics and ultrasound profile of significant anatomical structures. This novel DIY product could be an effective alternative to teach procedures in the context of resource-restrained clinical simulation centers.

2.
Angew Chem Int Ed Engl ; 59(52): 23772-23781, 2020 12 21.
Article in English | MEDLINE | ID: mdl-32931152

ABSTRACT

Fungal meroterpenoids are a diverse group of hybrid natural products with impressive structural complexity and high potential as drug candidates. In this work, we evaluate the promiscuity of the early structure diversity-generating step in fungal meroterpenoid biosynthetic pathways: the multibond-forming polyene cyclizations catalyzed by the yet poorly understood family of fungal meroterpenoid cyclases. In total, 12 unnatural meroterpenoids were accessed chemoenzymatically using synthetic substrates. Their complex structures were determined by 2D NMR studies as well as crystalline-sponge-based X-ray diffraction analyses. The results obtained revealed a high degree of enzyme promiscuity and experimental results which together with quantum chemical calculations provided a deeper insight into the catalytic activity of this new family of non-canonical, terpene cyclases. The knowledge obtained paves the way to design and engineer artificial pathways towards second generation meroterpenoids with valuable bioactivities based on combinatorial biosynthetic strategies.


Subject(s)
Biosynthetic Pathways/genetics , Fungi/chemistry , Terpenes/chemistry
3.
Angew Chem Int Ed Engl ; 58(45): 16141-16146, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31515901

ABSTRACT

A biomimetic route to farnesyl pyrophosphate and dimethyl orsellinic acid (DMOA)-derived meroterpenoid scaffolds has yet to be reported despite great interest from the chemistry and biomedical research communities. A concise synthetic route with the potential to access DMOA-derived meroterpenoids is highly desirable to create a library of related compounds. Herein, we report novel dearomatization methodology followed by polyene cyclization to access DMOA-derived meroterpenoid frameworks in six steps from commercially available starting materials. Furthermore, several farnesyl alkene substrates were used to generate structurally novel, DMOA-derived meroterpenoid derivatives. DFT calculations combined with experimentation provided a rationale for the observed thermodynamic distribution of polycyclization products.


Subject(s)
Biomimetics/methods , Polyenes/chemistry , Polyisoprenyl Phosphates/chemistry , Sesquiterpenes/chemistry , Terpenes/metabolism , Cyclization
4.
Diagn Microbiol Infect Dis ; 61(3): 294-301, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18394844

ABSTRACT

Large outbreaks of hand, foot, and mouth disease have been reported in the Asia Pacific region over the last few years and resulted in significant fatalities. The 2 main etiologic agents are Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16). Both viruses are closely related genetically and show similar clinical symptoms. However, EV71 are associated with neurologic complications and can lead to fatalities. In this study, we developed a multiplex real-time hybridization probe reverse transcriptase polymerase chain reaction to detect and differentiate EV71 from CA16 using the LightCycler (Roche Molecular Biochemicals). Specific primers and hybridization probes were designed based on highly conserved VP1 region of EV71 or CA16. Our results showed high specificity and sensitivities in detecting EV71 or CA16 from 67 clinical specimens, and no other enterovirus serotype was detected. Rapid diagnosis to differentiate EV71 from CA16 in outbreak situations will enable pediatricians to identify and manage the patients more effectively.


Subject(s)
Coxsackievirus Infections/diagnosis , Enterovirus Infections/diagnosis , Enterovirus/classification , Enterovirus/isolation & purification , Nucleic Acid Hybridization/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Coxsackievirus Infections/virology , Enterovirus/genetics , Enterovirus Infections/virology , Genes, Viral , Humans , Oligonucleotide Probes/genetics , Sensitivity and Specificity
5.
J Clin Virol ; 42(2): 203-6, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18304867

ABSTRACT

BACKGROUND: Enterovirus 71 (EV71) is the main etiological agent of Hand, Foot and Mouth Disease (HFMD) and has been associated with neurological complications which resulted in fatalities during recent outbreaks in Asia Pacific region. OBJECTIVE: Develop a real-time TaqMan RT-PCR for rapid detection of EV71. STUDY DESIGN: Specific primers and probe were designed based on highly conserved VP1 region of EV71. The sensitivity of the real-time RT-PCR was evaluated with 67 clinical specimens collected from pediatric patients with suspected HFMD. RESULTS: Our real-time TaqMan RT-PCR showed 100% specificity in detecting EV71 and showed an analytical sensitivity of 5 viral copies. High sensitivity was also achieved in detecting EV71 directly from clinical specimens. CONCLUSIONS: Real-time TaqMan RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks.


Subject(s)
Enterovirus A, Human/isolation & purification , Hand, Foot and Mouth Disease/diagnosis , Hand, Foot and Mouth Disease/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Taq Polymerase , Adolescent , Child , Child, Preschool , DNA Primers , Enterovirus A, Human/genetics , Humans , Infant , Infant, Newborn , RNA, Viral/analysis , RNA, Viral/isolation & purification , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...