Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3314, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632229

ABSTRACT

Chiral recognition of amino acids is very important in both chemical and life sciences. Although chiral recognition with luminescence has many advantages such as being inexpensive, it is usually slow and lacks generality as the recognition module relies on structural complementarity. Here, we show that one single molecular-solid sensor, L-phenylalanine derived benzamide, can manifest the structural difference between the natural, left-handed amino acid and its right-handed counterpart via the difference of room-temperature phosphorescence (RTP) irrespective of the specific chemical structure. To realize rapid and reliable sensing, the doped samples are obtained as nanocrystals from evaporation of the tetrahydrofuran solutions, which allows for efficient triplet-triplet energy transfer to the chiral analytes generated in situ from chiral amino acids. The results show that L-analytes induce strong RTP, whereas the unnatural D-analytes produce barely any afterglow. The method expands the scope of luminescence chiral sensing by lessening the requirement for specific molecular structures.


Subject(s)
Amino Acids , Luminescence , Amino Acids/chemistry , Temperature , Molecular Structure
2.
Angew Chem Int Ed Engl ; 63(24): e202405314, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38602843

ABSTRACT

Ice has been suggested to have played a significant role in the origin of life partly owing to its ability to concentrate organic molecules and promote reaction efficiency. However, the techniques for studying organic molecules in ice are absorption-based, which limits the sensitivity of measurements. Here we introduce an emission-based method to study organic molecules in water ice: the phosphorescence displays high sensitivity depending on the hydration state of an organic salt probe, acridinium iodide (ADI). The designed ADI aqueous system exhibits phosphorescence that can be severely perturbed when the temperature is higher than 110 K at a concentration of the order of 10-5 M, indicating changes in hydration for ADI. Using the ADI phosphorescent probe, it is found that the microstructures of water ice, i.e., crystalline vs. glassy, can be strongly dictated by a trace amount (as low as 10-5 M) of water-soluble organic molecules. Consistent with cryoSEM images and temperature-dependent Raman spectral data, the ADI is dehydrated in more crystalline ice and hydrated in more glassy ice. The current investigation serves as a starting point for using more sensitive spectroscopic techniques for studying water-organics interactions at a much lower concentration and wider temperature range.

3.
J Phys Chem Lett ; 15(1): 212-219, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38157213

ABSTRACT

Label-free data mining can efficiently feed large amounts of data from the vast scientific literature into artificial intelligence (AI) processing systems. Here, we demonstrate an unsupervised syntactic distance analysis (SDA) approach that is capable of mining chemical substances, functions, properties, and operations without annotation. This SDA approach was evaluated in several areas of research from the physical sciences and achieved performance in information mining comparable to that of supervised learning, as shown by its satisfactory scores of 0.62-0.72, 0.60-0.82, and 0.86-0.95 in precision, recall, and accuracy, respectively. We also showcase how our approach can assist robotic chemists programmed to perform research focused on double-perovskite colloidal nanocrystals, gold colloidal nanocrystals, oxygen evolution reaction catalysts, and enzyme-like catalysts by designing materials, formulations, and synthesis parameters based on data mined from 1.1 million literature references.

4.
Angew Chem Int Ed Engl ; 62(45): e202312627, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37732517

ABSTRACT

Room-temperature phosphorescence (RTP) polymers have important applications for biological imaging, oxygen sensing, data encryption, and photodynamic therapy. Despite the many advantages polymeric materials offer such as great control over gas permeability and processing flexibility, disorder is traditionally considered as an intrinsic negative impact on the efficiency for embedded RTP luminophores, as various allowed thermal motions could quench the emitting states. However, we propose that such disorder-enabled freedoms of microscopic motions can be beneficial for charge-transfer-mediated RTP, which is facilitated by molecular conformational changes among different electronic transition states. Using the "classic" pyrene-aniline exciplex as an example, we demonstrate the mutual enhancement of red/near-infrared and green RTP emissions from the pyrene and aniline moieties, respectively, upon doping the aniline polymer with trace pyrene derivatives. In comparison, a pyrene-doped crystal formed with the same aniline structure exhibits only charge-transfer fluorescence with no red or green RTP observed, suggesting that order suppresses the RTP channels. The proposed polymerization strategy may be used as a unified method to generate multi-emissive polymeric RTP materials from a vast pool of known and unknown exciplexes and charge-transfer complexes.

5.
Macromol Rapid Commun ; 43(19): e2200124, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35803897

ABSTRACT

Lipid nanovesicles (LNVs) and polymer nanovesicles (PNVs), also known as liposomes and polymersomes, are becoming increasingly vital in global health. However, the two major classes of nanovesicles both exhibit their own issues that significantly limit potential applications. Here, by covalently attaching a naturally occurring phosphate "lipid head" and a synthetic polylactide "polymer tail" via facile ring-opening polymerization on a 500 g scale, a type of "chimeric" nanovesicles (CNVs) can be easily produced. Compared to LNVs, the reported CNVs exhibit reduced permeability for small and large molecules; on the other hand, the CNVs are less hydrophobic and exhibit enhanced tolerance toward proteins in buffer solutions without the need for hydrophilic polymeric corona such as poly(ethylene glycol)(PEG), in contrast to conventional PNVs. The proof-of-concept in vitro delivery experiments using hydrophilic solutions of fluorescein-PEG, rhodamine-PEG, and anti-cancer drug doxorubicin demonstrate that these CNVs, as a structurally diverse class of nano-materials, are highly promising as alternative carriers for therapeutic molecules in translational nanomedicine.


Subject(s)
Antineoplastic Agents , Polymers , Antineoplastic Agents/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems , Fluoresceins , Lipids , Liposomes , Phosphates , Polyethylene Glycols/chemistry , Polymers/chemistry , Rhodamines
6.
Angew Chem Int Ed Engl ; 61(33): e202206366, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35670291

ABSTRACT

Triphenylamine (TPA) was reported to exhibit temperature-dependent dual phosphorescence, where the red-shifted band was assigned as the excimeric phosphorescence with an energy shift of >3000 cm-1 (J. Phys. Chem. 1991, 95, 7189). Here we show that purified TPA (purity: >99.97 %) shows a single phosphorescence band with a small energy shift of <200 cm-1 under the same experimental conditions. The new experimental results, along with theoretical calculations, suggest that the previously reported triplet excimer of TPA is probably not valid and is most likely due to an unidentified impurity. As-received TPA samples, however, do exhibit temperature-dependent dual phosphorescence bands, and the wavelength, relative intensity, and temperature dependence of the lower-energy phosphorescence band vary significantly depending on dopant structures. It was found that dopant phosphorescence could still become dominant even in dilute third-party solutions of the host at low temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...