Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37109977

ABSTRACT

In this paper, the effect of a sodium tripolyphosphate (STPP) addition on the dispersion and hydration of pure calcium aluminate cement (PCAC) was investigated, and the corresponding mechanism of effect was studied. The effects of STPP on the dispersion, rheology, and hydration processes of PCAC and its adsorption capacity on the surface of cement particles were analysed by measuring the 𝜁-potential on the surface of cement particles, the changes in the concentrations of elemental P and Ca2+ ions in a solution at different STPP additions. The experimental results show that STPP easily complexes with Ca2+ ions to produce the complex [CaP3O10]3- adsorbed on the surface of cement particles, which changes the potential on the surface of cement particles and increases the electrostatic repulsive force between cement particles, thus improving the dispersion and rheology of cement. At the same time, the contact area between cement particles and water is reduced, which hinders the hydration process and makes the time of hydration process longer. A comprehensive analysis shows that the best effect of STPP on pure calcium aluminate cements is achieved when the addition of STPP is 0.2%. This study can provide a reference for the addition of water-reducing agents in refractory castables as well as improving the quality of refractory materials.

2.
ACS Omega ; 6(5): 3745-3751, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33585753

ABSTRACT

A new method for the disposal of the spent refractory materials by adding them directly to electrolytic cells requires our better knowledge of the Na3AlF6-Al2O3-SiO2 melt system. The development of computational materials science offers us a new way to avoid the limitation of the experiment under a strong corrosive environment at high temperatures. First-principles simulation is applied to study the structure information, electronic properties, and transport properties of the system. The study reveals that the main Si and Al ions in the melt are complex ion groups such as [SiF2O2]2-, [SiFO3]3-, [SiF3O2]3-, [AlF2O2]3-, [AlF3O]2-, and [AlF4O]3-. Tangled structures like [SiAlO3F5]4- also exist in the melt. The average coordination number of Al-F and Si-F is 3.21 and 2.45, respectively. O ions mainly act as bridge ions in the melt. The bonding ability of Al with O ions is stronger than that of Si with O ions. Moreover, the Al-O bond is mainly covalent, while the Al-F bond is basically ionic characters. The order of diffusion ability of ions from large to small is Na, F, Al, Si, and O. Addition of SiO2 into the Na3AlF6-Al2O3 molten salt causes an increase of the viscosity and a decrease of ionic conductivity.

3.
Materials (Basel) ; 13(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228038

ABSTRACT

The effects of sodium hexametaphosphate (SHMP) addition on the dispersion and hydration of calcium aluminate cement were investigated, and the relevant mechanisms discussed. The content of SHMP and the adsorption capacity of SHMP on the surface of cement particles were estimated using plasma adsorption spectroscopy and the residual concentration method. The rheological behavior of hydrate, ζ-potential value of cement particles, phase transformation and the microstructure of the samples were determined by coaxial cylinder rheometer, zeta probe, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that SHMP readily reacted with Ca2+, forming complexes [Ca2(PO3)6]2- ions which were subsequently adsorbed onto the surfaces of cement particles. When the content of SHMP was 0.05%, the adsorption ratio reached 99%. However, it decreased to 89% upon further increasing the addition of SHMP to 0.4%. The complexes [Ca2(PO3)6]2- adsorbed onto the surfaces of cement particles inhibited the concentration of Ca2+ and changed ζ-potential, resulting in enhanced electrostatic repulsive force between the cement particles and reduced viscosity of cement-water slurry. The experimental results indicate that the complexes [Ca2(PO3)6]2- covering the surfaces of cement particles led to a delayed hydration reaction, i.e., they extended the hydration time of the cement particles, and that the optimal addition of SHMP was found to be about 0.2%.

4.
Materials (Basel) ; 13(1)2019 Dec 22.
Article in English | MEDLINE | ID: mdl-31877842

ABSTRACT

Submicron-sized (~200 nm) aluminium boron carbide (Al8B4C7) particles were synthesised from Al, B4C and carbon black raw materials in a molten NaCl-based salt at a relatively low temperature. The effects of the salt type/assembly and the firing temperature on the synthesis process were examined, and the relevant reaction mechanisms discussed. The molten salt played an important role in the Al8B4C7 formation process. By using a combined salt of 95%NaCl + 5%NaF, an effective liquid reaction medium was formed, greatly facilitating the Al8B4C7 formation. As a result, essentially phase-pure Al8B4C7 was obtained after 6 h of firing at 1250 °C. This temperature was 350-550 °C lower than that required by the conventional direct reaction and thermal reduction methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...