Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 8284, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811544

ABSTRACT

Linoleic acid (C18:2) is an important polyunsaturated fatty acid in the seed oil of many crops. Here, we report that mutations in the promoter, intron and CDS of the FAD2 genes SalFAD2.LIA1 and SalFAD2.LIA2 generate three alleles LIA 1a , LIA 1b and lia 1 and two alleles LIA 2 and lia 2, respectively, controlling the C18:2 variation (4.4-32.7%) in yellow mustard. The allelic effect on increasing C18:2 content is LIA 1a > LIA 1b > lia 1 , LIA 2 > lia 2, and LIA 1a > LIA 2. The five FAD 2 alleles each contain two exons, one intron and a promoter adjacent to exon 1. LIA 1a has a 1152 bp CDS, a 1221 bp intron with promoter function and a 607 bp promoter. Compared with LIA 1a , the intron of LIA 1b has reduced promoter activity and that of LIA 2 and lia 2 has no promoter function due to extensive SNP and indel mutations. lia 1 differed from LIA 1b by having an insertion of 1223 bp retrotransposon in its intron. lia 2 with mutations in the promoter has reduced promoter activity compared with LIA 2 . This study revealed that complex quantitative variation of trait phenotype in plants could be modulated by multiple alleles of oligogenic loci resulting from mutations in the regulatory region and CDS.


Subject(s)
Alleles , Fatty Acid Desaturases/genetics , Linoleic Acid/metabolism , Mustard Plant/genetics , Mustard Plant/metabolism , Mutation , Promoter Regions, Genetic , Chromosome Mapping , Cloning, Molecular , Fatty Acids/metabolism , Gene Expression , Gene Expression Regulation, Plant , Gene Order , Introns , Open Reading Frames , Phenotype , Quantitative Trait Loci , Quantitative Trait, Heritable
2.
Food Funct ; 6(7): 2384-95, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26091085

ABSTRACT

This study investigated the structural stability of yellow mustard (YM, Sinapis alba L.) napin and the changes of its Sin a 1 anti-epitope antibody-binding ability during myrosinase enzyme inactivation process. The food industry uses myrosinase-inactive non-pungent YM for uses beyond spice applications. Napin was isolated from seeds received from an industrial processor before (YM + M) and after (YM - M) myrosinase inactivation. Secondary and tertiary structural features and surface hydrophobicity parameters of napin were analyzed. The Sin a 1 content in YM seeds and the stability of Sin a 1-containing napin during simulated in vitro gastrointestinal (GI) digestion were determined by a non-competitive indirect enzyme-linked immunosorbent assay using the Sin a 1 anti-epitope antibody (AE-Ab) as the primary Ab. YM napin retained the dominant alpha-helical components of secondary and tertiary structure folds during this process. YM - M napin showed changes in hydrophobicity parameters of the molecules and binding ability of AE-Ab: 2.19 ± 0.48 g per 100 g of YM - M seeds vs. 1.49 ± 0.16 g per 100 g YM + M seeds. YM - M proteins were more susceptible for in vitro GI digestion and also showed a 30% reduction in AE-Ab binding ability upon digestion of napins. This suggests that the myrosinase inactivation process has induced the surface modification of napin, exposing Sin a 1 epitope, leading to an increase in AE-Ab binding. However, the epitope region of YM - M napin showed improved susceptibility for hydrolysis during GI digestion resulting in fewer available epitope regions, suggesting a possible reduction in napin immune reactivity.


Subject(s)
2S Albumins, Plant/metabolism , Antigens, Plant/chemistry , Antigens, Plant/metabolism , Glycoside Hydrolases/metabolism , Plant Proteins/chemistry , Sinapis/enzymology , 2S Albumins, Plant/chemistry , 2S Albumins, Plant/genetics , Amino Acid Sequence , Antigens, Plant/genetics , Enzyme Activation , Epitopes/chemistry , Epitopes/genetics , Epitopes/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Models, Molecular , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Seeds/chemistry , Seeds/enzymology , Seeds/genetics , Seeds/metabolism , Sinapis/chemistry , Sinapis/genetics , Sinapis/metabolism
3.
Plant Cell ; 26(6): 2648-2659, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24934174

ABSTRACT

Naturally occurring heritable variation provides a fundamental resource to reveal the genetic and molecular bases of traits in forward genetic studies. Here, we report the molecular basis of the differences in the four alleles E1, E2, E3, and e of the FATTY ACID ELONGATION1 (FAE1) gene controlling high, medium, low, and zero erucic content in yellow mustard (Sinapis alba). E1 represents a fully functional allele with a coding DNA sequence (CDS) of 1521 bp and a promoter adjacent to the CDS. The null allele e resulted from an insertional disruption in the CDS by Sal-PIF, a 3100-bp PIF/Harbinger-like DNA transposon, whereas E2 and E3 originated from the insertion of Sal-T1, a 4863-bp Copia-like retrotransposon, in the 5' untranslated region. E3 was identical to E2 but showed cytosine methylation in the promoter region and was thus an epiallele having a further reduction in expression. The coding regions of E2 and E3 also contained five single-nucleotide polymorphisms (SNPs) not present in E1, but expression studies in Saccharomyces cerevisiae indicated that these SNPs did not affect enzyme functionality. These results demonstrate a comprehensive molecular framework for the interplay of transposon insertion, SNP/indel mutation, and epigenetic modification influencing the broad range of natural genetic variation in plants.

4.
PLoS One ; 9(5): e97430, 2014.
Article in English | MEDLINE | ID: mdl-24823372

ABSTRACT

Development of yellow mustard (Sinapis alba L.) with superior quality traits (low erucic and linolenic acid contents, and low glucosinolate content) can make this species as a potential oilseed crop. We have recently isolated three inbred lines Y1127, Y514 and Y1035 with low (3.8%), medium (12.3%) and high (20.8%) linolenic acid (C18∶3) content, respectively, in this species. Inheritance studies detected two fatty acid desaturase 3 (FAD3) gene loci controlling the variation of C18∶3 content. QTL mapping revealed that the two FAD3 gene loci responsible for 73.0% and 23.4% of the total variation and were located on the linkage groups Sal02 and Sal10, respectively. The FAD3 gene on Sal02 was referred to as SalFAD3.LA1 and that on Sal10 as SalFAD3.LA2. The dominant and recessive alleles were designated as LA1 and la1 for SalFAD3.LA1, and LA2 and la2 for SalFAD3.LA2. Cloning and alignment of the coding and genomic DNA sequences revealed that the SalFAD3.LA1 and SalFAD3.LA2 genes each contained 8 exons and 7 introns. LA1 had a coding DNA sequence (CDS) of 1143 bp encoding a polypeptide of 380 amino acids, whereas la1 was a loss-of-function allele due to an insertion of 584 bp in exon 3. Both LA2 and la2 had a CDS of 1152 bp encoding a polypeptide of 383 amino acids. Allele-specific markers for LA1, la1, LA2 and la2 co-segregated with the C18∶3 content in the F2 populations and will be useful for improving fatty acid composition through marker assisted selection in yellow mustard breeding.


Subject(s)
Agriculture/methods , Fatty Acid Desaturases/genetics , Genes, Plant/genetics , Genetic Markers/genetics , Sinapis/enzymology , alpha-Linolenic Acid/genetics , Amino Acid Sequence , Base Sequence , Chromosome Mapping , Cloning, Molecular , Cluster Analysis , Fatty Acids/analysis , Gene Components , Molecular Sequence Data , Phylogeny , Quantitative Trait Loci , Seeds/chemistry , Sequence Analysis, DNA , Sinapis/chemistry , alpha-Linolenic Acid/analysis
5.
Mol Breed ; 33: 187-196, 2014.
Article in English | MEDLINE | ID: mdl-24482603

ABSTRACT

Yellow mustard (Sinapis alba) has a sporophytic self-incompatibility reproduction system. Genetically stable self-incompatible (SI) and self-compatible (SC) inbred lines have recently been developed in this crop. Understanding the S haplotype of different inbred lines and the inheritance of the self-(in)compatibility (SI/SC) trait is very important for breeding purposes. In this study, we used the S-locus gene-specific primers in Brassica rapa and Brassica oleracea to clone yellow mustard S-locus genes of SI lines Y514 and Y1130 and SC lines Y1499 and Y1501. The PCR amplification results and DNA sequences of the S-locus genes revealed that Y514 carried the class I S haplotype, while Y1130, Y1499, and Y1501 had the class II S haplotype. The results of our genetic studies indicated that self-incompatibility was dominant over self-compatibility and controlled by a one-gene locus in the two crosses of Y514 × Y1499 and Y1130 × Y1501. Of the five S-locus gene polymorphic primer pairs, Sal-SLGI and Sal-SRKI each generated one dominant marker for the SI phenotype of Y514; Sal-SLGII and Sal-SRKII produced dominant marker(s) for the SC phenotype of Y1501 and Y1499; Sal-SP11II generated one dominant marker for Y1130. These markers co-segregated with the SI/SC phenotype in the F2 populations of the two crosses. In addition, co-dominant markers were developed by mixing the two polymorphic primer pairs specific for each parent in the multiplex PCR, which allowed zygosity to be determined in the F2 populations. The SI/SC allele-specific markers have proven to be very useful for the selection of the desirable SC genotypes in our yellow mustard breeding program.

6.
BMC Plant Biol ; 13: 142, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24066707

ABSTRACT

BACKGROUND: Yellow mustard (Sinapis alba L.) is an important condiment crop for the spice trade in the world. It has lagged behind oilseed Brassica species in molecular marker development and application. Intron length polymorphism (ILP) markers are highly polymorphic, co-dominant and cost-effective. The cross-species applicability of ILP markers from Brassica species and Arabidopsis makes them possible to be used for genetic linkage mapping and further QTL analysis of agronomic traits in yellow mustard. RESULTS: A total of 250 ILP and 14 SSR markers were mapped on 12 linkage groups and designated as Sal01-12 in yellow mustard. The constructed map covered a total genetic length of 890.4 cM with an average marker interval of 3.3 cM. The QTL for erucic content co-localized with the fatty acid elongase 1 (FAE1) gene on Sal03. The self-(in)compatibility gene was assigned to Sal08. The 4-hydroxybenzyl, 3-indolylmethyl and 4-hydroxy-3-indolylmethyl glucosinolate contents were each controlled by one major QTL, all of which were located on Sal02. Two QTLs, accounting for the respective 20.4% and 19.2% of the total variation of 2-hydroxy-3-butenyl glucosinolate content, were identified and mapped to Sal02 and Sal11. Comparative synteny analysis revealed that yellow mustard was phylogenetically related to Arabidopsis thaliana and had undergone extensive chromosomal rearrangements during speciation. CONCLUSION: The linkage map based on ILP and SSR markers was constructed and used for QTL analysis of seed quality traits in yellow mustard. The markers tightly linked with the genes for different glucosinolate components will be used for marker-assisted selection and map-based cloning. The ILP markers and linkage map provide useful molecular tools for yellow mustard breeding.


Subject(s)
Erucic Acids/metabolism , Glucosinolates/metabolism , Quantitative Trait Loci/genetics , Sinapis/genetics , Sinapis/metabolism , Chromosome Mapping
7.
Plants (Basel) ; 1(1): 16-26, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-27137637

ABSTRACT

Yellow mustard (Sinapis alba L.) has been grown as an important source of condiment for the spice trade in the world. It is an obligate outcrossing species due to its sporophytic self-incompatibility (SI). To utilize heterosis for yield potential, we have attempted to develop elite component inbred lines for producing high-yielding synthetic varieties for this crop. The open-pollinated variety Andante was used as the initial population. To circumvent the SI barrier, bud-pollination for selfing was performed on the selected initial (S0) plants. Various types of inbreeding depression were observed in the S1 generation. Elite inbred lines tolerant to inbreeding were produced by purging the deleterious alleles in each inbred generation. Self-compatible (SC) lines were developed for the first time in this species. There were three types of erucic variants (high: 49.9%, median: 23.9% and low: 1.4%), three types of linolenic variants (high: 18.5%, median: 13.8% and low: 3.8%) and two types of mucliage variants (high: 164.0 cS*mL/g and low: 12.0 cS*mL/g) among the developed inbred lines. These variants are being used to investigate the genetic and molecular mechanism underpinning the phenotypic variation of the seed oil profile and SI/SC traits in yellow mustard.

8.
Transgenic Res ; 19(2): 221-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19582587

ABSTRACT

Eicosapentaenoic acid (EPA, 20:5n-3) plays an important role in many aspects of human health. In our efforts towards producing high levels of EPA in plants, we investigated the effects of different host species, genes and promoters on EPA biosynthesis. Zero-erucic acid Brassica carinata appeared to be an outstanding host species for EPA production, with EPA levels in transgenic seed of this line reaching up to 25%. Two novel genes, an 18-carbon omega3 desaturase (CpDesX) from Claviceps purpurea and a 20-carbon omega3 desaturase (Pir-omega3) from Pythium irregulare, proved to be very effective in increasing EPA levels in high-erucic acid B. carinata. The conlinin1 promoter from flax functioned reasonably well in B. carinata, and can serve as an alternative to the napin promoter from B. napus. In summary, the judicious selection of host species and promoters, together with the inclusion of genes that enhance the basic very long chain polyunsaturated fatty acid biosynthetic pathway, can greatly influence the production of EPA in plants.


Subject(s)
Biotechnology/methods , Brassica/genetics , Eicosapentaenoic Acid/biosynthesis , Fatty Acid Desaturases/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Brassica/classification , Brassica/growth & development , Brassica/metabolism , Claviceps/enzymology , Claviceps/genetics , Erucic Acids/metabolism , Fatty Acid Desaturases/genetics , Gene Expression Regulation, Plant , Humans , Plants, Genetically Modified/enzymology , Promoter Regions, Genetic , Pythium/enzymology , Pythium/genetics , Seeds/genetics , Seeds/metabolism , Species Specificity , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...