Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 19(1): 275, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38102601

ABSTRACT

BACKGROUND: The objective of this study was to evaluate the effects of glutamine on the growth performance and systemic innate immune response in broiler chickens challenged with Salmonella pullorum. A total of 600 one-day-old Arbor Acres broiler chickens were assigned randomly to 6 dietary treatments with 10 replicates for a 21-day feeding experiment. The experimental treatments were as follows: the control treatment (birds fed the basal diet), the Gln1 treatment, and the Gln 2 treatment (birds fed the basal diet supplemented with 0.5%, and 1.0% Glutamine, respectively). At 3 d of age, half of the birds from each treatment were challenged oral gavage with 2.0 × 104 CFU/mL of S. pullorum suspension (1.0 mL per bird) or an equivalent amount of sterile saline alone, which served as a control. RESULTS: The results showed that S. pullorum infection had adverse effects on the average daily feed intake, average daily gain, and feed conversion ratio of broiler chickens compared with those of the CON treatment on d 7, decreased the spleen and bursa of fabricius relative weights (except on d 21), serum immunoglobulin A (IgA),immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations, and spleen melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology gene 2 (LGP2) mRNA expression levels, and increased the mRNA expression levels of spleen Nodinitib-1 (NOD1), Toll-like receptors 2,4 (TLR2, TLR4), DNA-dependent activator of IFN-regulatory factors (DAI), mitochondrial antiviral-signaling protein (MAVS), P50, P65, and RelB on d 4, 7, 14, and 21. Supplementation with Gln improved the relative weights of the spleen and bursa of Fabricius (except on d 21), increased the serum IgA, IgG, and IgM concentrations and the mRNA expression levels of spleen MDA5 and LGP2, and decreased the mRNA expression levels of spleen NOD1, TLR2, TLR4, DAI, MAVS, P50, P65, and RelB of S. pullorum-challenged broiler chickens. CONCLUSION: These results indicate that Gln might stimulate the systemic innate immune responses of the spleen in broiler chickens challenged with S. pullorum.


Subject(s)
Chickens , Toll-Like Receptor 2 , Animals , Toll-Like Receptor 2/metabolism , Glutamine/pharmacology , Toll-Like Receptor 4/metabolism , Dietary Supplements , Diet/veterinary , Immunity, Innate , Salmonella , Immunoglobulin G , Immunoglobulin M , RNA, Messenger/metabolism , Immunoglobulin A , Animal Feed/analysis
2.
Res Vet Sci ; 134: 51-57, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33296811

ABSTRACT

To explore the effect of glutamine (Gln) on the growth performance, digestive enzyme activity, absorption function and mRNA expression of intestinal transporters in heat-stressed chickens, 540 21-day-old Arbor Acres broilers were randomly assigned to a control group (no stress, NS), Gln group (Chickens were administered 0.5% and 1.0% Gln, respectively), heat stress group (HT), and Gln + HT group (Chickens were administered 0.5% and 1.0% Gln, respectively). The chickens in the HT and Gln + HT groups were reared under HT (36 ± 1 °C for 10 h/d and 22 ± 1 °C for 14 h/d), for 21 days. In contrast to the NS group, heat stress caused a reduction in the body weight gain (BWG); feed intake (FI); activity of trypsin, lipase, alkaline phosphatases, Ca2+ and Mg2+ adenosine triphosphatases, and Na+-K+-ATPase; and content of glutathione and d-xylose (P < 0.05) in the other groups. In addition, compared to the F:G and expression levels in the NS group, the heat stress increased the feed intake:body weight gain (F:G) and mRNA expression levels of SGLT1, CaBP-D28k, and L-GSBP (P < 0.05). Furthermore, HT-challenged birds were pretreated with Gln, the BWG; FI; activity of trypsin, lipase, alkaline phosphatase, Ca2+ and Mg2+ adenosine triphosphatases, and Na+-K+-ATPase; and content of glutathione and d-xylose (P < 0.05) were dramatically increased, but it decreased the F:G and mRNA expression levels of SGLT1, CaBP-D28k, and L-GSBP (P < 0.05) in the HT group. In summary, Gln can effectively improve growth performance and may promote digestion and absorption in the gastrointestinal tract by mediating the mRNA expression level of nutrient transporters and Gln metabolism in heat-stressed broilers.


Subject(s)
Chickens , Gastrointestinal Tract/drug effects , Gastrointestinal Transit/drug effects , Glutamine/pharmacology , Heat-Shock Response/drug effects , Animals , Chickens/genetics , Digestion/drug effects , Eating , Gastrointestinal Tract/metabolism , Glutamine/administration & dosage , Intestines/drug effects , Male , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...