Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731487

ABSTRACT

The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.


Subject(s)
Antifungal Agents , Azoles , Fusarium , Gallic Acid , Triticum , Fusarium/drug effects , Fusarium/growth & development , Gallic Acid/chemistry , Gallic Acid/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triticum/microbiology , Azoles/pharmacology , Azoles/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Microbial Sensitivity Tests
2.
Appl Opt ; 63(4): 959-966, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38437392

ABSTRACT

In this paper, a highly sensitive ammonia (N H 3) sensor based on a polymethyl methacrylate/polyaniline (PMMA/PANI) microwire structure is designed and implemented. First, a micron-sized PMMA microwire was fabricated and connected with two tapered single-mode fibers to form a coupling structure; thus, the Mach-Zehnder (MZ) interference was successfully excited due to the good light conductivity of the PMMA. It was demonstrated that the coupling structure behaved with a high refractive index detection sensitivity of 3044 nm/RIU. To make it sensitive to N H 3, the PANI was selected to mix with PMMA and then formed a micron-level PMMA/PANI fiber. The experimental results showed that the PMMA/PANI fiber can selectively sense N H 3 with a high sensitivity of 65.3 pm/ppm. This proposed N H 3 sensor not only solves the problem of sensitive film shedding, but also possesses the advantages of good integration, high sensitivity, good selectivity, and short response time.

3.
Molecules ; 28(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37836834

ABSTRACT

Shigella dysenteriae is a highly pathogenic microorganism that can cause human bacillary dysentery by contaminating food and drinking water. This study investigated the antibacterial activity of chestnut bur polyphenol extract (CBPE) on S. dysenteriae and the underlying mechanism. The results showed that the minimum inhibitory concentration (MIC) of CBPE for S. dysenteriae was 0.4 mg/mL, and the minimum bactericidal concentration (MBC) was 1.6 mg/mL. CBPE treatment irreversibly disrupted cell morphology, decreased cell activity, and increased cell membrane permeability, cell membrane depolarization, and cell content leakage of S. dysenteriae, indicating that CBPE has obvious destructive effects on the cell membrane and cell wall of S. dysenteriae. Combined transcriptomic and metabolomics analysis revealed that CBPE inhibits S. dysenteriae by interfering with ABC protein transport, sulfur metabolism, purine metabolism, amino acid metabolism, glycerophospholipid metabolism, and some other pathways. These findings provide a theoretical basis for the prevention and treatment of S. dysenteriae infection with extract from chestnut burs.


Subject(s)
Dysentery, Bacillary , Shigella dysenteriae , Humans , Polyphenols/pharmacology , Anti-Bacterial Agents/pharmacology , Dysentery, Bacillary/microbiology , Plant Extracts/pharmacology
4.
Int J Biol Macromol ; 253(Pt 3): 126862, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37703971

ABSTRACT

The application of Chitosan (CS) in drug delivery systems, plant growth promotion, antibacterial potentiality and plant defense is significantly limited by its inability to dissolve in neutral solutions. In this work, CS with different molecular weights (Mw) has been oxidized, yielding five kinds of oxidized chitosan (OCS 1-5) with solubilities in neutral solutions. The results obtained from Fourier Transform Infrared Spectroscopy clearly showed the successful oxidation of the hydroxyl group to form aldehyde and carboxyl groups. And the CS derivatives showed the wrinkled and lamellar structures on the surface of OCS. The results of antifungal activity against Fusarium graminearum showed that the OCS dissolved in 2 % (V/V) acetic acid exhibited better performance of almost complete inhibition of mycelial growth compared with CS at the concentration of 500 µg/mL. Among the five OCS, OCS-4 exhibited the best antifungal effect and had the lowest EC50 value of 581.68 µg/mL in samples. OCS-4 displayed superior promoting effect on seed germination with a germination potential of 62.2 % at a concentration of 3 g/L and a germination rate of 74.5 %. Additionally, the other four OCS also showed excellent antifungal activity with dose-dependent manners. These results indicated that the OCS had excellent antifungal potential in agricultural production.


Subject(s)
Antifungal Agents , Chitosan , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Molecular Weight , Chitosan/chemistry , Plant Growth Regulators , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared
5.
Int J Med Mushrooms ; 24(11): 73-82, 2022.
Article in English | MEDLINE | ID: mdl-36374950

ABSTRACT

The objective of the current study is to reveal the influence of particle size of ground Schizophyllum commune and its extracted dietary fiber (DF) on physicochemical and antioxidant properties. Sch. commune powder and the extracted DF was ground by regular and superfine grinding, and their particle sizes were determined using laser diffraction particle size analyzer. The results indicated that superfine grinding could significantly pulverize DF particles to micro-scale; the particle size distribution presented a Gaussian distribution. The soluble DF in Sch. commune was increased effectively with superfine grinding. Sub-micronized insoluble DF showed increased total phenolic content (TPC) and ferric reducing antioxidant power (FRAP). Moreover, with particle size reduction, the oil binding capacity (OBC), nitrite ion absorption capacity (NIAC), cation-exchange capacity (CEC), cholesterol absorption capacity (CAC), and Pb ion adsorption capacity were significantly (p < 0.05) increased and the water retention capacity (WRC), swelling capacity (SC) and Cu, Zn ions adsorption capacity had no significant changes. A kind of health beneficial DF with higher soluble DF content, OBC, NIAC, CEC, CAC, Pb ion adsorption capacity and antioxidant activity (TPC and FRAP) was obtained through superfine grinding. Sch. commune DF could be potentially used as an ingredient for functional food and nutraceuticals.


Subject(s)
Agaricales , Schizophyllum , Antioxidants/chemistry , Agaricales/metabolism , Lead , Dietary Fiber/analysis , Phenols/chemistry
6.
Int J Biol Macromol ; 219: 1112-1121, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36049564

ABSTRACT

Fusarium graminearum (F. graminearum), a pathogen for Fusarium head blight (FHB) on wheat, significantly reduces wheat yield and poses potential threats to human food safety. In this study, graphene oxide (GO) modified chitosan (GO-CS composite) was synthesized and its antifungal activity against F. graminearum in vitro and in vivo was evaluated. The 1HNMR and FTIR results revealed the reaction between the carboxyl groups in GO and the amino groups in chitosan (CS). In vitro, the combination of GO and CS resulted in a significant synergistic inhibitory effect on the mycelial growth of F. graminearum relative to single GO or CS. The EC50 value of the GO-CS composite was 14.07 µg/mL, which was much lower than that of GO or CS alone. In vivo, the GO-CS composite significantly reduced the disease incidence and severity compared with single GO or CS, and the control efficacy could reach 60.01 %. Microbial cells might be ultimately damaged when interacting with GO-CS due to various mechanisms such as biological effects and physical barriers. Overall, the combination of GO and CS provides new opportunities for their application in the control of fungi.


Subject(s)
Chitosan , Fusarium , Antifungal Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Graphite , Humans , Plant Diseases/microbiology
7.
J Biomater Sci Polym Ed ; 33(12): 1495-1510, 2022 08.
Article in English | MEDLINE | ID: mdl-35443893

ABSTRACT

Chitosan biomaterials are widely used in the biological area because of their broad-spectrum antibacterial activity. However, chitosan cannot be dissolved in a neutral solution, limiting its application in various fields seriously. In this study, water-soluble sulfonated oxidized chitosan (SOCS) with antifungal activity were prepared by oxidization and sulfonation. Its structure was clearly confirmed by spectroscopy data (FTIR, 1H NMR, 13C NMR) and elemental analysis. SEM images of OCS and SOCS revealed that there was a little curly and an irregular sheet-like morphologies on them which was attributed to the oxidation and sulfonation on CS. Moreover, the FTIR and NMR indicated that -OH on the CS was oxidized into -COOH on the OCS and -SO3H groups on the SOCS. The EDS results of OCS and SOCS confirmed the presence of the oxygen element in OCS and the S element in SOCS. All studies confirmed the OCS and SOCS were synthesized successfully. Furthermore, the inhibitory activity of SOCS biocomposites against plant pathogenic fungi, (Fusarium graminearum), was investigated. The results showed that the SOCS have significant inhibitory effects on the mycelial growth of F. graminearum. The EC50 value of SOCS against F. graminearum is 79.46 µg/mL. The research results presented above indicated that SOCS can be used as a candidate material for the control of plant pathogenic fungi, and can broaden the application of chitosan materials in plant protection and sustainable agriculture.Research highlightsSOCS showed better solubility in deionized water.The antifungal effect of SOCS dissolved in acetic acid was higher than that of CS dissolved in acetic acid.SOCS dissolved in water can cause an inhibitory effect on F. graminearum at lower concentrations.


Subject(s)
Chitosan , Fusarium , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Water
8.
Nanomaterials (Basel) ; 12(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35407232

ABSTRACT

Efficient and environment-friendly nanopesticide delivery systems are critical for the sustainable development of agriculture. In this study, a graphene oxide nanocomposite was developed for pesticide delivery and plant protection with pyraclostrobin as the model pesticide. First, graphene oxide-pyraclostrobin nanocomposite was prepared through fast adsorption of pyraclostrobin onto graphene oxide with a maximum loading of 87.04%. The as-prepared graphene oxide-pyraclostrobin nanocomposite exhibited high stability during two years of storage, suggesting its high potential in practical application. The graphene oxide-pyraclostrobin nanocomposite could achieve temperature (25 °C, 30 °C and 35 °C) and pH (5, 7 and 9) slow-release behavior, which overcomes the burst release of conventional pyraclostrobin formulation. Furthermore, graphene oxide-pyraclostrobin nanocomposite exhibited considerable antifungal activities against Fusarium graminearum and Sclerotinia sclerotiorum both in vitro and in vivo. The cotoxicity factor assay revealed that there was a synergistic interaction when graphene oxide and pyraclostrobin were combined at the ratio of 1:1 against the mycelial growth of Fusarium graminearum and Sclerotinia sclerotiorum with co-toxicity coefficient values exceeding 100 in vitro. The control efficacy of graphene oxide-pyraclostrobin nanocomposite was 71.35% and 62.32% against Fusarium graminearum and Sclerotinia sclerotiorum in greenhouse, respectively, which was higher than that of single graphene oxide and pyraclostrobin. In general, the present study provides a candidate nanoformulation for pathogenic fungal control in plants, and may also expand the application of graphene oxide materials in controlling plant fungal pathogens and sustainable agriculture.

9.
Nanomaterials (Basel) ; 11(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34578709

ABSTRACT

Plant pathogens constantly develop resistance to antimicrobial agents, and this poses great challenges to plant protection. Therefore, there is a pressing need to search for new antimicrobials. The combined use of antimicrobial agents with different antifungal mechanisms has been recognized as a promising approach to manage plant diseases. Graphene oxide (GO) is a newly emerging and highly promising antimicrobial agent against various plant pathogens in agricultural science. In this study, the inhibitory activity of GO combined with fungicides (Mancozeb, Cyproconazol and Difenoconazole) against Fusarium graminearum was investigated in vivo and in vitro. The results revealed that the combination of GO and fungicides has significant synergistic inhibitory effects on the mycelial growth, mycelial biomass and spore germination of F. graminearum relative to single fungicides. The magnitude of synergy was found to depend on the ratio of GO and fungicide in the composite. In field tests, GO-fungicides could significantly reduce the disease incidence and disease severity, exhibiting a significantly improved control efficacy on F. graminearum. The strong synergistic activity of GO with existing fungicides demonstrates the great application potential of GO in pest management.

10.
RSC Adv ; 11(57): 36089-36097, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-35492771

ABSTRACT

Nanopesticides with controlled release can achieve more effective utilization of pesticides. Here, to enhance the adsorption of pesticides onto the target organisms, the formulation of pesticides with temperature-responsive release was proposed by combing graphene oxide (GO) and existing pyrethroid pesticides (cyhalothrin, bifenthrin and fenpropathrin). Pesticides were loaded onto GO nanosheets as a carrier via a simple physisorption process, and the GO-pesticide nanocomposites exhibited temperature-responsive release and excellent storage stability, which are of vital importance to the practical application. Furthermore, we assessed the bioactivity of the GO-pesticide nanocomposites against spider mites (Tetranychus urticae Koch) indoors and in the field. As a result, GO-pesticide nanocomposites had many folds higher bioactivity than individual pesticides, and could be adsorbed on the cuticle of T. urticae and surface of bean leaves with highly uniform dispersibility. The easy preparation and higher bioactivity of GO-pesticide nanocomposites indicate their promising application potential in pest control and green agriculture.

SELECTION OF CITATIONS
SEARCH DETAIL
...