Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 414: 135673, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36821921

ABSTRACT

Contribution of various phenols on wine astringency profiles was far from clear explanations. To effectively describe wine astringency profiles and determined the function of tannins/matrix (pH and ethanol), multiple chemical analyses combined RATA (Rate-all-that-apply) sensory method were applied in Cabernet Sauvignon and model wines. Results showed that polymeric flavanols determined the bulk of wine astringency intensity, oligomeric tannins enriched the smoothness and periodontium astringency, and monomeric phenol enhanced overall astringency intensity through synergistic effect. Astringency balance was effectively quantification, and its potential correlation relationship with epicatechin extension subunit (0.83) and fluorescence peak shift (0.75) cannot be ignored. The astringency profiles of condensed tannins with anthocyanins were enhanced. Low-pH (from 3.8 to 3.0) enhanced astringency by increasing the tannins affinity to proteins, while ethanol (from 10.0 % âˆ¼ 15.0 %) decreased the hydrophobicity bond between tannins-protein interaction. This paper provided new insights to explain wine astringency profiles and a reference for astringency modification during winemaking.


Subject(s)
Proanthocyanidins , Vitis , Tannins/chemistry , Astringents/analysis , Anthocyanins , Polyphenols , Phenols/analysis , Vitis/chemistry
2.
Food Chem ; 403: 134385, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36174337

ABSTRACT

Previous studies acknowledged that tartaric acid-imparted low-pH contributed to the enhancement of astringency, but in-depth studies are lacking and the underlying mechanisms are not clearly understood. This work introduced new insight into the effect of tartaric acid on astringency perception from the perspectives of complex formation, protein secondary structure, chemical bond type and salivary layer fluidity by establishing models using proteins (α-amylase, salivary proteins) and tannic acid. Results demonstrated that tartaric acid affects wine astringency by two mechanisms: a) Tartaric acid compound directly affects the wine astringency by forming ternary complexes and causing the protein structure to stretch by changing the hydrogen bond and hydrophobic bond between protein-polyphenol complexes. b) pH affected astringency by increasing the fluidity of the salivary layer rather than increasing the consumption of the salivary layer. The findings provide valuable information to the wine industry to regulate wine astringency by the management of tartaric acid.


Subject(s)
Astringents , Wine , Astringents/chemistry , Wine/analysis , Taste , Tartrates
3.
J Sci Food Agric ; 103(3): 1499-1513, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36189836

ABSTRACT

BACKGROUND: Oenological tannins are commercial natural products extracted from different botanical sources, which were widely reported as prominent contributors to wine quality. Research on wine quality affected by tannins extracts promoted the development of new oenological products with low cost and high accessibility. In the present study, the structure and concentration of tannin in polyphenol extracts, as well as their correlation with astringency and the color of model wine, was investigated by UV spectrophotometer, HPLC, fluorescence quenching, sodium dodecylsulfate-polyacrylamide gel electrophoresis, colorimeter and sensory evaluation. RESULTS: Resource extracts from 16 of 44 plants were screened as wine oenological tannins, according to the total polyphenol and total flavanol, as well as the intensity of astringency and bitterness. Polyphenols extracted from grape seeds and green tea were more effective in increasing the wine astringency compared to other plant tannins. CONCLUSION: Total flavanol content and tannin activity showed a strong correlation with wine astringency. Condensed tannins with mean degree of polymerization also exhibited strong color stability, and the concentrations of (-)-epigallocatechin were associated with the a* value, a negative qualitative factor for wine color. The present study provides new clues regarding the development of low-cost and highly accessible sources of polyphenol extracts and lays a theoretical foundation for the development of the oenological product. © 2022 Society of Chemical Industry.


Subject(s)
Vitis , Wine , Astringents/analysis , Plant Extracts/chemistry , Polyphenols/analysis , Tannins/analysis , Vitis/chemistry , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...