Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 31(37): 375605, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32454465

ABSTRACT

In this paper, an effective approach is demonstrated for the fabrication of IrO2-decorated polystyrene@functionalized polypyrrole (core@shell; PS@PPyNH2) microspheres. The synthesis begins with the preparation of monodispersive PS microspheres with a diameter of 490 nm, by a process of emulsifier-free emulsion polymerization, followed by a copolymerization process involving pyrrole and PyNH2 monomers in a PS microsphere aqueous suspension, to produce uniform PS@PPyNH2 microspheres with a diameter of 536 nm. The loading of 2 nm IrO2 nanoparticles onto the PS@PPyNH2 microspheres can be easily adjusted by tuning the pH value of the IrO2 colloidal solution and the PS@PPyNH2 suspension. At pH 4, we successfully obtain IrO2-decorated PS@PPyNH2 microspheres via electrostatic attraction and hydrogen bonding simultaneously between the negatively-charged IrO2 nanoparticles and the positively-charged PS@PPyNH2 microspheres. These IrO2-decorated PS@PPyNH2 microspheres exhibit a characteristic cyclic voltammetric profile, similar to that of an IrO2 thin film. The charge storage capacity is 5.19 mA cm-2, a value almost five times greater than that of PS@PPyNH2 microspheres. In addition, these IrO2-decorated PS@PPyNH2 microspheres exhibit excellent cell viability and biocompatibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...