Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 154: 213615, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716334

ABSTRACT

Hyaluronic acid/silk fibroin (HA/SF or HS) hydrogels with remarkable mechanical characteristics have been reported as tissue engineering biomaterials. Herein, the addition of dopamine/polydopamine (DA/PDA) to HS hydrogels to develop multifunctional HA/PDA/SF (or HDS) hydrogels for the delivery of drugs such as N-acetyl-L-cysteine (NAC) from nasal to brain tissue is examined. Herein, DA-dependent functions of HDS hydrogels with highly adhesive forces, photothermal response (PTR) effects generated by near infrared (NIR) irradiation, and anti-oxidative effects were demonstrated. An in-vitro study shows that the HDS/NAC hydrogels could open tight junctions in the RPMI 2650 cell line, a model cell of the nasal mucosa, as demonstrated by the decreased values of transepithelial electrical resistance (TEER) and more discrete ZO-1 staining than those for the control group. This effect was markedly enhanced by NIR irradiation of the HDS/NAC-NIR hydrogels. Compared to the results obtained using NAC solution, an in-vivo imaging study (IVIS) in rats showed an approximately nine-fold increase in the quantity of NAC delivered from the nasal cavity to the brain tissue in the span of 2 h through the PTR effect generated by the NIR irradiation of the nasal tissue and administration of the HDS/NAC hydrogels. Herein, dopamine-dependent multifunctional HDS hydrogels were studied, and the nasal administration of HDS/NAC-NIR hydrogels with PTR effects generated by NIR irradiation was found to have significantly enhanced NAC delivery to brain tissues.


Subject(s)
Fibroins , Rats , Animals , Acetylcysteine/pharmacology , Hyaluronic Acid/pharmacology , Dopamine/pharmacology , Hydrogels/pharmacology , Nasal Cavity , Brain
2.
Entropy (Basel) ; 24(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-37420428

ABSTRACT

Recently, Zhao et al. proposed a semi-quantum bi-signature (SQBS) scheme based on W states with two quantum signers and just one classical verifier. In this study, we highlight three security issues with Zhao et al.'s SQBS scheme. In Zhao et al.'s SQBS protocol, an insider attacker can perform an impersonation attack in the verification phase and an impersonation attack in the signature phase to capture the private key. In addition, an eavesdropper can perform a man-in-the-middle attack to obtain all of the signer's secret information. All of the above three attacks can pass the eavesdropping check. Without considering these security issues, the SQBS protocol could fail to ensure the signer's secret information.

3.
Chemosphere ; 271: 129510, 2021 May.
Article in English | MEDLINE | ID: mdl-33434827

ABSTRACT

Zeolite socony mobil-5 (ZSM-5) is a common catalyst used for biomass pyrolysis. Nevertheless, the quantitative information on the catalytic behavior of ZSM-5 on biomass pyrolysis is absent so far. This study focuses on the catalytic pyrolysis phenomena and mechanisms of biomass wastes using ZSM-5 via thermogravimetric analyzer and pyrolysis-gas chromatography/mass spectrometry, with particular emphasis on catalytic level identification and aromatic hydrocarbons (AHs) formation. Two biomass wastes of sawdust and sorghum distillery residue (SDR) are investigated, while four biomass-to-catalyst ratios are considered. The analysis suggests that biomass waste pyrolysis processes can be divided into three zones, proceeding from a heat-transfer dominant zone (zone 1) to catalysis dominant zones (zones 2 and 3). The indicators of the intensity of difference (IOD), catalytic effective area, catalytic index (CI), and aromatic enhancement index are conducted to measure the catalytic effect of ZSM-5 on biomass waste pyrolysis and AHs formation. The maximum IOD occurs in zone 2, showing the highest intensity of the catalytic effect. The CI values of the two biomass wastes increase with increasing the biomass-to-catalyst ratio. However, there exists a threshold for sawdust pyrolysis, indicating a limit for the catalytic effect on sawdust. The higher the catalyst addition, the higher the AHs proportion in the vapor stream. When the biomass-to-catalyst ratio is 1/10, AHs formation is intensified significantly, especially for sawdust. Overall, the indexes conducted in the present study can provide useful measures to identify the catalytic pyrolysis dynamics and levels.


Subject(s)
Hydrocarbons, Aromatic , Zeolites , Biomass , Catalysis , Hot Temperature , Pyrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...