Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Toxics ; 12(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38668466

ABSTRACT

In recent years, commercial air transport has increased considerably. However, the compositions and source profiles of volatile organic compounds (VOCs) emitted from aircraft are still not clear. In this study, the characteristics of VOCs (including oxygenated VOCs (OVOCs)) emitted from airport sources were measured at Shenzhen Bao'an International Airport. The results showed that the compositions and proportions of VOC species showed significant differences as the aircraft operating state changed. OVOCs were the dominant species and accounted for 63.17%, 58.44%, and 51.60% of the total VOC mass concentration during the taxiing, approach, and take-off stages. Propionaldehyde and acetone were the main OVOCs, and dichloromethane and 1,2-dichloroethane were the main halohydrocarbons. Propane had the highest proportion among all alkanes, while toluene and benzene were the predominant aromatic hydrocarbons. Compared with the source profiles of VOCs from construction machinery, the proportions of halogenated hydrocarbons and alkanes emitted from aircraft were significantly higher, as were those of propionaldehyde and acetone. OVOCs were still the dominant VOC species in aircraft emissions, and their calculated ozone formation potential (OFP) was much higher than that of other VOC species at all stages of aircraft operations. Acetone, propionaldehyde, formaldehyde, acetaldehyde, and ethylene were the greatest contributors to ozone production. This study comprehensively measured the distribution characteristics of VOCs, and its results will aid in the construction of a source profile inventory of VOCs emitted from aircraft sources in real atmospheric environments.

2.
Sci Total Environ ; 930: 172822, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38688364

ABSTRACT

With advances in vehicle emission control technology, updating source profiles to meet the current requirements of source apportionment has become increasingly crucial. In this study, on-road and non-road vehicle particles were collected, and then the chemical compositions of individual particles were analyzed using single particle aerosol mass spectrometry. The data were grouped using an adaptive resonance theory neural network to identify signatures and establish a mass spectral database of mobile sources. In addition, a deep learning-based model (DeepAerosolClassifier) for classifying aerosol particles was established. The objective of this model was to accomplish source apportionment. During the training process, the model achieved an accuracy of 98.49 % for the validation set and an accuracy of 93.36 % for the testing set. Regarding the model interpretation, ideal spectra were generated using the model, verifying its accurate recognition of the characteristic patterns in the mass spectra. In a practical application, the model performed hourly source apportionment at three specific field monitoring sites. The effectiveness of the model in field measurement was validated by combining traffic flow and spatial information with the model results. Compared with other machine learning methods, our model achieved highly automated source apportionment while eliminating the need for feature selection, and it enables end-to-end operation. Thus, in the future, it can be applied in refined and online source apportionment of particulate matter.

3.
Sci Total Environ ; 926: 171880, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38531461

ABSTRACT

The formation and aging processes of oxygenated organic molecules (OOMs) are important for understanding the formation mechanisms of secondary organic aerosols (SOAs) in the field. In this study, we investigated the mixing states of OOM particles by identifying several oxygenated species along with the distributions of secondary organic carbon (SOC) during both clean and ozone (O3)-polluted periods in July and September of 2022 in Guangzhou, China. OOM-containing particles accounted for 57 % and 49 % of the total detected single particles in July and September, respectively. Most of the OOM particles were internally mixed with sulfate and nitrate, while elemental carbon and hydrocarbon species were absent. Despite the higher SOC/OC ratio in September (81 %) than it in July (72 %), comparative investigations of the mass spectra, diurnal patterns, and distributions of OOM particles revealed the same composition and aging states of OOMs in two O3 pollution periods. As the O3 concentration increased from the clean to the polluted periods, the ratio of SOC to OC increased along with the relative abundance of secondary OOM particles among total OOM particles. In contrast, the relative abundance of OC-type OOM particles gradually decreased, indicating the conversion of hydrocarbon species into OOMs as the SOC/OC ratio increased. Both the bulk analysis of SOC from filter measurement and the mixing states of OOM particles suggested that OOM production and degree of oxidation were higher in the O3-polluted periods than in the clean periods. These results elucidate the effects of O3 pollution on the OOM formation process and offer new perspectives for the joint investigation of SOA production based on filter sampling and single-particle measurements.

4.
Math Biosci Eng ; 21(1): 369-391, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303427

ABSTRACT

In traditional Chinese medicine (TCM), artificial intelligence (AI)-assisted syndrome differentiation and disease diagnoses primarily confront the challenges of accurate symptom identification and classification. This study introduces a multi-label entity extraction model grounded in TCM symptom ontology, specifically designed to address the limitations of existing entity recognition models characterized by limited label spaces and an insufficient integration of domain knowledge. This model synergizes a knowledge graph with the TCM symptom ontology framework to facilitate a standardized symptom classification system and enrich it with domain-specific knowledge. It innovatively merges the conventional bidirectional encoder representations from transformers (BERT) + bidirectional long short-term memory (Bi-LSTM) + conditional random fields (CRF) entity recognition methodology with a multi-label classification strategy, thereby adeptly navigating the intricate label interdependencies in the textual data. Introducing a multi-associative feature fusion module is a significant advancement, thereby enabling the extraction of pivotal entity features while discerning the interrelations among diverse categorical labels. The experimental outcomes affirm the model's superior performance in multi-label symptom extraction and substantially elevates the efficiency and accuracy. This advancement robustly underpins research in TCM syndrome differentiation and disease diagnoses.


Subject(s)
Artificial Intelligence , Medicine, Chinese Traditional , Medicine, Chinese Traditional/methods
5.
J Environ Sci (China) ; 138: 62-73, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135425

ABSTRACT

Organic nitrogen (ON) compounds play a significant role in the light absorption of brown carbon and the formation of organic aerosols, however, the mixing state, secondary formation processes, and influencing factors of ON compounds are still unclear. This paper reports on the mixing state of ON-containing particles based on measurements obtained using a high-performance single particle aerosol mass spectrometer in January 2020 in Guangzhou. The ON-containing particles accounted for 21% of the total detected single particles, and the particle count and number fraction of the ON-containing particles were two times higher at night than during the day. The prominent increase in the content of ON-containing particles with the enhancement of NOx mainly occurred at night, and accompanied by high relative humidity and nitrate, which were associated with heterogeneous reactions between organics and gaseous NOx and/or NO3 radical. The synchronous decreases in ON-containing particles and the mass absorption coefficient of water-soluble extracts at 365 nm in the afternoon may be associated with photo-bleaching of the ON species in the particles. In addition, the positive matrix factorization analysis found five factors dominated the formation processes of ON particles, and the nitrate factor (33%) mainly contributed to the production of ON particles at night. The results of this study provide unique insights into the mixing states and secondary formation processes of the ON-containing particles.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Nitrates/analysis , Environmental Monitoring , China , Organic Chemicals/analysis , Aerosols/analysis
6.
Sci Total Environ ; 894: 164942, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37329918

ABSTRACT

Incense burning is a common religious activity that emits abundant gaseous and particulate pollutants into the atmosphere. During their atmospheric lifetime, these gases and particles are subjected to oxidation, leading to the formation of secondary pollutants. We examined the oxidation of incense burning plumes under O3 exposure and dark condition using an oxidation flow reactor connected to a single particle aerosol mass spectrometer (SPAMS). Nitrate formation was observed in incense burning particles, mainly attributable to the ozonolysis of nitrogen-containing organic compounds. With UV on, nitrate formation was significantly enhanced, likely due to HNO3/HNO2/NOx uptake triggered by OH chemistry, which is more effective than ozone oxidation. The extent of nitrate formation is insensitive to O3 and OH exposure, possibly due to the diffusion limitation on interfacial uptake. The O3-UV-aged particles are more oxygenated and functionalized than O3-Dark-aged particles. Oxalate and malonate, two typical secondary organic aerosol (SOA) components, were found in O3-UV-aged particles. Our work reveals that nitrate, accompanied by SOA, can rapidly form in incense-burning particles upon photochemical oxidation in the atmosphere, which could deepen our understanding of air pollution caused by religious activities.

7.
Toxics ; 11(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37112565

ABSTRACT

The distribution of vanadium (V) in aerosols is commonly used to track ship exhaust emissions, yet the atmospheric abundance of V has been greatly reduced due to the implementation of a clean fuel policy. Recent research mainly discussed the chemical compositions of ship-related particles during specific events, yet few studies focus on the long-term changes of V in the atmosphere. In this study, a single-particle aerosol mass spectrometer was used to measure V-containing particles from 2020 to 2021 in Huangpu Port in Guangzhou, China. The long-term trend of the particle counts of V-containing particles declined annually, but the relative abundance of V-containing particles in the total single particles increased in summer due to the influence of ship emissions. Positive matrix factorization revealed that in June and July 2020, 35.7% of the V-containing particles were from ship emissions, followed by dust and industrial emissions. Furthermore, more than 80% of the V-containing particles were found mixing with sulfate and 60% of the V-containing particles were found mixing with nitrate, suggesting that the majority of the V-containing particles were secondary particles processed during the transport of ship emissions to urban areas. Compared with the small changes in the relative abundance of sulfate in the V-containing particles, the relative abundance of nitrate exhibited clear seasonal variations, with a high abundance in winter. This may have been due to the increased production of nitrate from high concentrations of precursors and a suitable chemical environment. For the first time, the long-term trends of V-containing particles in two years are investigated to demonstrate changes in their mixing states and sources after the clean fuel policy, and to suggest the cautious application of V as an indicator of ship emissions.

8.
Environ Res ; 229: 115980, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37098386

ABSTRACT

Accelerated urbanization and industrialization have led to an alarming increase in the generation of wastewater with complex chemical contents. Industrial wastewaters are often a primary source of water contamination. The chemical characterization of different industrial wastewater types is an essential task to interpret the chemical fingerprints of wastewater to identify pollution sources and develop efficient water treatment strategies. In this study, we conduct a non-target chemical analysis for the source characterization of different industrial wastewater samples collected from a chemical industrial park (CIP) located in southeast China. The chemical screening identified volatile and semi-volatile organic compounds that included dibutyl phthalate at a maximum concentration of 13.4 µg/L and phthalic anhydride at 35.9 µg/L. Persistent, mobile, and toxic (PMT) substances among the detected organic compounds were identified and prioritized as high-concern contaminants given their impact on drinking water resources. Moreover, a source analysis of the wastewater collected from the wastewater outlet station indicated that the dye production industry contributed the largest quantities of toxic contaminates (62.6%), and this result was consistent with the ordinary least squares and heatmap results. Thus, our study utilized a combined approach of a non-target chemical analysis, a pollution source identification method, and a PMT assessment of different industrial wastewater samples collected from the CIP. The results of the chemical fingerprints of different industrial wastewater types as well as the results of the PMT assessment benefit risk-based wastewater management and source reduction strategies.


Subject(s)
Environmental Pollutants , Volatile Organic Compounds , Water Pollutants, Chemical , Environmental Pollutants/analysis , Wastewater , Water Pollutants, Chemical/analysis , China
9.
Article in English | MEDLINE | ID: mdl-36777631

ABSTRACT

The electronic medical records (EMRs) of traditional Chinese medicine (TCM) include a wealth of TCM knowledge and syndrome diagnosis information, which is crucial for improving the quality of TCM auxiliary decision-making. In practical diagnosis, one disease corresponds to one syndrome, posing considerable hurdles for the informatization of TCM. The purpose of this work was to create an end-to-end TCM diagnostic model, and the knowledge graph (KG) created in this article is used to improve the model's information and realize auxiliary decision-making for TCM disorders. We approached auxiliary decision-making for syndrome differentiation in this article as a multilabel classification task and presented a knowledge-based decision support model for syndrome differentiation (KDSD). Specifically, we created a KG based on TCM features (TCMKG), supplementing the textual representation of medical data with embedded information. Finally, we proposed fusing medical text with KG entity representation (F-MT-KER) to get prediction results using a linear output layer. After obtaining the vector representation of the medical record text using the BERT model, the vector representation of various KG embedded models can provide additional hidden information to a certain extent. Experimental results show that our method improves by 1% (P@1) on the syndrome differentiation auxiliary decision task compared to the baseline model BERT. The usage of EMRs can aid TCM development more efficiently. With the help of entity level representation, character level representation, and model fusion, the multilabel classification method based on the pretraining model and KG can better simulate the TCM syndrome differentiation of the complex cases.

10.
Sci Total Environ ; 869: 161758, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36702262

ABSTRACT

Volatile organic compounds (VOCs) are important precursors of ozone (O3) and fine particulate matter (PM2.5). An accurate depiction of the emission characteristics of VOCs is the key to formulating VOC control strategies. In this study, the VOC emission factors and source profiles in five industrial sectors were developed using large-scale field measurements conducted in Guangzhou, China (100 samples for the emission factors and 434 samples for the source profile measurements). The emission factors based on the actual measurement method and the material balance method were 1.6-152.4 kg of VOCs per ton of raw materials (kg/t) and 3.1-242.2 kg/t, respectively. The similarities between the emission factors obtained using these two methods were examined, which showed a coefficient of divergence (CD) of 0.34-0.72. Among the 33 subdivided VOC source profiles developed in this study, sources including light guide plate (LGP), photoresist mask, and plastic products were the first time developed in China. Due to regional diversities in terms of production technologies, materials, and products, the emission characteristics of the VOCs varied, even in the same sector, thereby demonstrating the importance of developing localized source profiles of VOCs. The ozone formation potential (OFP) of the shipbuilding and repair sector from fugitive emissions was the highest value among all the industrial sectors. Controlling the emissions of aromatics and OVOCs was critical to reducing the O3 growth momentum in industrial sectors. In addition, 1,2-dibromoethane showed high carcinogenic risk potentials (CRPs) during most of the industrial sectors and should be prioritized for controlling.

11.
J Environ Sci (China) ; 124: 806-822, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182185

ABSTRACT

The real-time detection of the mixing states of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs in ambient particles is of great significance for analyzing the source, aging process, and health effects of PAHs and nitro-PAHs; yet there is still few effective technology to achieve this type of detection. In this study, 11 types of PAH and nitro-PAH standard samples were analyzed using a high performance-single particle aerosol mass spectrometer (HP-SPAMS) in lab studies. The identification principles 'parent ions' and 'mass-to-charge (m/z) = 77' of each compound were obtained in this study. It was found that different laser energies did not affect the identification of the parent ions. The comparative experiments of ambient atmospheric particles, cooking and biomass burning emitted particles with and without the addition of PAHs were conducted and ruled out the interferences from primary and secondary organics on the identification of PAHs. Besides, the reliability of the characteristic ions extraction method was evaluated through the comparative study of similarity algorithm and deep learning algorithm. In addition, the real PAH-containing particles from vehicle exhaust emissions and ambient particles were also analyzed. This study improves the ability of single particle mass spectrometry technology to detect PAHs and nitro-PAHs, and HP-SPAMS was superior to SPAMS for detecting single particles containing PAHs and nitro-PAHs. This study provides support for subsequent ambient observations to identify the characteristic spectrum of single particles containing PAHs and nitro-PAHs.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Mass Spectrometry/methods , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Reproducibility of Results , Vehicle Emissions/analysis
12.
Environ Res ; 214(Pt 4): 114075, 2022 11.
Article in English | MEDLINE | ID: mdl-35963317

ABSTRACT

Although recent laboratory simulations have demonstrated that organic matter prevents the degradation of polycyclic aromatic hydrocarbons (PAHs), their role in the long-range transport of PAHs in the real atmosphere remains poorly understood. In this study, we measured the chemical composition and mixing state of PAHs-containing individual particles in aerosols from three sources, one urban area and one remote area. PAHs-containing particles were classified into five types: organic carbon (OC), potassium mixed with organic carbon (KOC), potassium mixed with sodium (KNa), Krich and PAH-rich. The PAH-rich and KOC particles were the main types of particles produced by vehicle exhaust/coal burning and biomass burning, respectively, accounting for >50% of the PAHs-containing particles. It was found that organic matter enhancement of PAHs-containing particles occurs in the ambient atmosphere, with organic-rich (OC and KOC) particles accounting for >90%. Further analysis revealed that the increase in the fractions of PAHs was related to the mixing state with organic compounds due to the protection of organics against PAHs and/or the aging of PAHs-containing particles. The results of this study improve our understanding of the chemical composition and mixing state of PAHs particles in atmospheric aerosols from emission sources and urban and remote areas, and provide field observation evidence to support the promotion of the study of long-range transport of PAHs by organics.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Potassium/analysis
13.
Sci Total Environ ; 846: 157440, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35868389

ABSTRACT

The formation processes of particulate amines are closely related to their emission sources and secondary reactions, which can be revealed through the investigation of their real-time mixing states in individual particles. The mixing states of methylamine (MA)-, trimethylamine (TMA)-, and diethylamine (DEA)-containing particles were studied using a high-performance single particle aerosol mass spectrometer (HP-SPAMS) in Guangzhou, China, in January 2020. The sharp increase in TMA particles was found to be closely associated with the increase in the ambient relative humidity (RH), while the MA- and DEA-containing particles were not similarly influenced by the changes in the RH. The prominent enrichment of secondary oxygenated organics in DEA particles during the daytime was consistent with the active period of photochemistry, implying that the sharp decrease in DEA particles in the afternoon was likely due to photo-oxidation of the DEA. The number fraction (Nf) of DEA particles, the Nf of the nitrate in the DEA particles, and the abundance of nitrate increased as the NOx content all increased during the nighttime, suggesting that the formation of DEA·HNO3 salt was the dominant pathway of particulate DEA production. These results are consistent with our previous measurements in Nanjing, confirming the general and distinct mixing states of TMA and DEA particles. Positive matrix factorization analysis revealed that the total fraction of the more oxidized organics factor and the less oxidized organics factor were much higher in the DEA particles (26.9 %) than in the TMA particles (9 %), confirming the significant enrichment of oxygenated species in the DEA particles. The different mixing states of the amines revealed the unique response of each type of amine to the same atmospheric environment, and the prominent mixing states of the DEA with secondary oxygenated species suggest the potential role of DEA in tracing the evolution of organic aerosols.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Amines , China , Coal , Dust , Environmental Monitoring/methods , Nitrates , Particulate Matter/analysis
14.
Sci Total Environ ; 844: 156995, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35777561

ABSTRACT

Imidazoles (IMs) are potential contributors to brown carbon; they may notably contribute to climate radiative forcing. However, only a few studies have assessed the mixing state, seasonal and spatial distributions of IMs, and influencing factors for IM formation in urban aerosols. In this study, two single-particle aerosol mass spectrometers were employed to investigate the IM-containing particles in the urban areas of Beijing and Guangzhou, China. IM-containing particles were identified in the size range (dva) of 0.2-2.0 µm, accounting for 0.7-21.7 % of all the detected particles. The number fractions of IM-containing particles in both cities were the lowest in winter and the highest in spring, probably owing to the difference in the abundance of precursors and the particle acidity. Majority of (60-80 % by number) the IM-containing particles were mixed with organic carbon (OC), with the lowest fractions found in summer. Although the number fractions of IM-containing particles in Beijing were generally higher (~1.5-3 times) than those in Guangzhou, the mixing states of the IM-containing particles at these two sites were only slightly different. Potassium-rich (K-rich) and potassium-sodium (KNa) particles were rarely found in Guangzhou; they accounted for ~15 % of the IM-containing particles in Beijing. Additionally, our results indicate that particles with higher acidity are favorable for IM formation. These findings help improving our knowledge of the mixing state, seasonal variation, and spatial distribution of IMs in urban aerosols, and the insights in influencing factors into IM formation provide valuable information for future studies of the atmospheric chemical processes associated with IMs.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Beijing , Carbon/analysis , China , Environmental Monitoring/methods , Imidazoles , Mass Spectrometry , Particle Size , Particulate Matter/analysis , Potassium/analysis , Seasons
15.
Article in English | MEDLINE | ID: mdl-35186106

ABSTRACT

The clinical informatization of traditional Chinese medicine (TCM) focuses on serving users and assisting in diagnosis. The rules of clinical knowledge play an important role in improving the TCM informatization service. However, many rules are difficult to find because of the complexity of the data in the current TCM syndrome prediction. Therefore, we proposed an end-to-end model, called Decision-making System for the Diagnosis of Syndrome (DSDS), which is based on the knowledge graph (KG) of TCM. This paper introduces the link prediction for the diagnosis of syndrome by dismantling medical records into multiple symptoms. In addition, based on the symptoms and predicted syndromes, the most relevant syndrome could be determined by the scoring and voting method in this paper. The results show that the accuracy of DSDS is 80.6%.

16.
Sci Total Environ ; 819: 153117, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35041959

ABSTRACT

The domestic emission control area (DECA) policy has been implemented in China since 2017. However, its impact on ship emissions and in turn urban air quality is still unclear. In this study, real-time single particle measurements were carried out at a site in urban Guangzhou, about 1 km downwind of Huangpu Port, the largest maritime transport hub in southern China, in the summer of 2020 using a single particle aerosol mass spectrometer (SPAMS). During the campaign, the hourly averaged number fraction of ship emitted particles, using vanadium as a chemical indicator, varied from 0 to 14% with an average of 2 ± 1%. Ship emitted single particles contain organic carbon (OC), elemental carbon (EC), metals, sulfate and nitrate. More than 95% of ship emitted particles were sulfate-containing particles and the relative peak areas (RPAs) of sulfate and vanadium in the hourly average mass spectra of ship emitted particles were highly correlated (R2 = 0.85), suggesting the potential contribution of ship emissions to sulfate production in coastal cities. The relative abundance of OC and EC-related components in ship emitted particles varied and it was likely attributed to the different blending fluids used in the production of low sulfur fuels. The results from this study provide evidence for evaluating the effectiveness of the current regulations and guidance for future policy-making regarding the low sulfur fuel quality regulation and multiple-component control strategies.


Subject(s)
Air Pollutants , Air Pollution , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Environmental Monitoring/methods , Particle Size , Particulate Matter/analysis , Ships , Vehicle Emissions/analysis
17.
J Environ Sci (China) ; 111: 185-196, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34949348

ABSTRACT

Black carbon (BC) plays an important role in air quality and climate change, which is closely associated with its mixing state and chemical compositions. In this work the mixing state of BC-containing single particles was investigated to explore the evolution process of ambient BC particles using a single particle aerosol mass spectrometer (SPAMS) in March 2018 in Zhengzhou, China. The BC-containing particles accounted for 61.4% of total detected ambient single particles and were classified into five types including BC-nitrate (BC-N, 52.3%) as the most abundant species, followed by BC-nitrate-sulfate (BC-NS, 22.4%), BCOC (16.8%), BC-fresh (BC-F, 4.5%) and BC-sulfate particles (BC-S, 4.0%). With enhancement of the ambient nitrate concentration, the relative peak area (RPA) of nitrate in BC-N and BCNS particles both increased, yet only the number fraction (Nf) of BCN particles increased while the Nf of BC-NS particles decreased, suggesting that the enhanced mixing state of BC with nitrate was mainly due to the increase in the ambient nitrate mass concentration. In addition, the Nf of BC-N decreased from 65.3% to 28.4% as the absorbing Ångström exponents (AAE) of eBC increased from 0.75 to 1.45, which indicated the reduction of light absorption ability of aged BC particles with the enhanced formation of BC-N particles. The results of this work indicated a change in the mixing state of BC particles due to the dominance of nitrate in PM2.5, which also influenced the optical properties of aged BC particles.


Subject(s)
Air Pollutants , Nitrates , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Environmental Monitoring , Nitrates/analysis , Particle Size , Particulate Matter/analysis
18.
Sci Total Environ ; 800: 149422, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34426320

ABSTRACT

To investigate photochemical ozone (O3) formation and provide localized control strategies, an intensive sampling of O3 and its precursors (i.e. volatile organic compounds (VOCs) and nitrogen oxides (NOx = NO + NO2)) were conducted at an urban site in Leshan, Sichuan province during 4-13 August 2019. The mixing ratios of O3, total VOCs (TVOCs) and NOx were 40.0 ± 5.3, 22.5 ± 2.6 and 14.6 ± 3.8 ppbv, respectively (±95% confidence intervals). O3 and its precursors existed a well negative correlation, indicating intensive local O3 formation. To further explore the O3-precursors relationship and observation-oriented O3 control strategies, a photochemical box model coupled with master chemical mechanism (PBM-MCM) was adapted. The relative incremental reactivity (RIR) calculated by model results showed that Leshan was in the VOCs-limited and O3 production was most sensitive to alkenes. Moreover, O3 isopleth diagram was drawn using the PBM-MCM simulation results and seven reduction scenarios were evaluated in Leshan. The reduction ratio of VOCs/NOx on 3:1 was proposed to be the best solution, which can be achieved effective reduction on local O3 formation. At last, since VOCs were the key precursors of O3 in Leshan, VOC sources and their potential contributions to O3 formation were investigated by using the positive matrix factorization (PMF) model. Seven sources were identified, and traffic related emissions (including vehicle exhaust and gasoline evaporation, 29.9%) and fixed combustion (27.7%) had the large contribution to ambient VOCs. Among anthropogenic sources, fixed combustion and solvent usage in painting were the large contributors to O3 formation, accounting for 30.9% and 18.3%, respectively, which should have high priorities on source reduction. This study provides scientific advices for future O3 pollution control strategies in Leshan, which can be extended to other cities.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/analysis , China , Cities , Environmental Monitoring , Ozone/analysis
19.
Sci Total Environ ; 794: 148638, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34217089

ABSTRACT

Cooking is an important source of primary organic aerosol (POA) in urban areas, and it may also generate abundant non-methane organic gases (NMOGs), which form oxidized organic aerosol (OOA) after atmospheric oxidation. Edible fats play an important role in a balanced diet and are part of various types of cooking. We conducted laboratory studies to examine the primary emissions of POA and NMOGs and OOA formation using an oxidation flow reactor (OFR) for three animal fats (i.e., lard, beef and chicken fats) heated at two different temperatures (160 and 180 °C). Positive matrix factorization (PMF) revealed that OOA formed together with POA loss after photochemical aging, suggesting the conversion of some POA to OOA. The maximum OOA production rates (PRs) from heated animal fats, occurring under OH exposures (OHexp) of 8.3-15 × 1010 molecules cm-3 s, ranged from 8.9 to 24.7 µg min-1, 1.6-14.5 times as high as initial POA emission rates (ERs). NMOG emissions from heated animal fats were dominated by aldehydes, which contributed 14-71% of the observed OOA. We estimated that cooking-related OOA could contribute to as high as ~10% of total organic aerosol (OA) in an urban area in Hong Kong, where cooking OA (COA) dominated the POA. This study provides insights into the potential contribution of cooking to urban OOA, which might be especially pronounced when cooking contributions dominate the primary emissions.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Animals , Cooking , Hot Temperature , Oxidation-Reduction , Particulate Matter/analysis
20.
Sci Total Environ ; 783: 146962, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-33866183

ABSTRACT

Recently, internal mixing states of oxalate with metals in single particles have been reported from field studies, yet the role of metals in the formation processes of oxalate remains unclear due to the diversity of chemical components and complex atmospheric environment. In this study, the mixing states of oxalate with five metals, including zinc (Zn), copper (Cu), lead (Pb), vanadium (V) and iron (Fe) were investigated in Guangzhou, China. It was found that 55% of oxalate-containing particles were internally mixed with these metals. The number fraction of oxalate in the metal-containing particles ranged from 5.4-26%, which is much higher than that in the total detected particles (4.0%), indicating significant enrichment of oxalate in the metal-containing particles. Enhanced oxalate production was found in the Fe- and V-containing particles based on distinctly higher relative peak area (RPA) ratios of oxalate to its precursors compared to the total particles, possibly due to enhanced aqueous phase reactions in the Fe- and V-containing particles. However, enrichment of oxalate in the Zn-, Pb-, and Cu-containing particles was possibly associated with complexation of gas phase oxalic acid with the metals, as indicated by the small increase in RPA ratios in these particles. On the other hand, the internal mixing of oxalate with metals was found to provide a way of efficient photolysis of oxalate-metal complexes, which led to a decrease in oxalate after sunrise in the metal-containing particles. In this study, the enhanced mixing states of oxalate with metals have revealed the important role of metals in the production and degradation of oxalate, providing insights for the evaluation of metals in the formation processes of organic aerosol in field studies, which is beneficial to the further study of air pollution in metal emission areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...