Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(2): e23443, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38265281

ABSTRACT

Immune-mediated acute hepatic injury is characterized by the destruction of a large number of hepatocytes and severe liver function damage. Interleukin-28A (IL-28A), a member of the IL-10 family, is notable for its antiviral properties. However, despite advances in our understanding of IL-28A, its role in immune-mediated acute injury remains unclear. The present study investigated the role of IL-28A in concanavalin A (Con A)-induced acute immune liver injury. After Con A injection in mice, IL-28A level significantly increased. IL-28A deficiency was found to protect mice from acute liver injury, prolong survival time, and reduce serum aspartate aminotransferase and alanine aminotransferase levels. In contrast, recombinant IL-28A aggravated liver injury in mice. The proportion of activated M1 macrophages was significantly lower in the IL-28A-deficiency group than in the wild-type mouse group. In adoptive transfer experiments, M1 macrophages from WT could exacerbate mice acute liver injury symptoms in the IL-28A deficiency group. Furthermore, the expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL-12, IL-6, and IL-1ß, by M1 macrophages decreased significantly in the IL-28A-deficiency group. Western blotting demonstrated that IL-28A deficiency could limit M1 macrophage polarization by modulating the nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and interferon regulatory factor (IRF) signaling pathways. In summary, IL-28A deletion plays an important protective role in the Con A-induced acute liver injury model and IL-28A deficiency inhibits the activation of M1 macrophages by inhibiting the NF-κB, MAPK, and IRF signaling pathways. These results provide a potential new target for the treatment of immune-related hepatic injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Cytokines , Interferon Lambda , Interleukins , Animals , Mice , Concanavalin A , Interferon Regulatory Factors , Liver , Macrophages , Mitogen-Activated Protein Kinases , Interferon Lambda/genetics , Interleukins/genetics
2.
Front Immunol ; 14: 1091541, 2023.
Article in English | MEDLINE | ID: mdl-36969174

ABSTRACT

Although psoriasis is classified as a T cell-mediated inflammatory disease, the contribution of myeloid cells to the pathogenesis of psoriasis is not fully understood. In the present study, we demonstrated that the expression of the anti-inflammatory cytokine interleukin-35 (IL-35) was significantly increased in patients with psoriasis with a marked increase in the number of myeloid-derived suppressor cells (MDSCs). Similar results were obtained in an imiquimod-induced psoriasis mouse model. IL-35 reduced the total number of MDSCs and their subtypes in the spleens and psoriatic skin lesions, ameliorating psoriasis. IL-35 also reduced the expression of inducible nitric oxide synthase in MDSCs, although it had no significant effect on interleukin-10 expression. Adoptive transfer of MDSCs from imiquimod-challenged mice aggravated the disease and weakened the effect of IL-35 in the recipient mice. In addition, mice transferred with MDSCs isolated from inducible nitric oxide synthase knockout mice had milder disease than those with wild-type MDSCs. Furthermore, wild-type MDSCs reversed the effects of IL-35, while MDSCs isolated from inducible nitric oxide synthase knockout mice did not affect IL-35 treatment. In summary, IL-35 may play a critical role in the regulation of iNOS-expressing MDSCs in the pathogenesis of psoriasis, highlighting IL-35 as a novel therapeutic strategy for patients with chronic psoriasis or other cutaneous inflammatory diseases.


Subject(s)
Myeloid-Derived Suppressor Cells , Psoriasis , Animals , Mice , Myeloid-Derived Suppressor Cells/metabolism , Imiquimod , Nitric Oxide Synthase Type II/metabolism , Psoriasis/metabolism , Mice, Knockout , Interleukins/genetics , Interleukins/metabolism
3.
Int Immunopharmacol ; 109: 108799, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35525232

ABSTRACT

The type III interferon family (IFN-III), including IFN-λ3 [interleukin (IL)-28B], has antiviral, anti-tumor, and immunomodulatory activities. Although the IL-28B anti-tumor effect has been extensively explored, its underlying mechanism remains unclear. Here, we explored IL-28B effects on colon cancer. Our results show that IL-28B significantly inhibits colon cancer progression in a mouse MC38 tumor cell colonization model and colitis-associated colorectal tumor model. Interestingly, IL-28B does not directly promote apoptosis or inhibit MC38 tumor cell proliferation in vitro. Rather, IL-28B treatment has indirect anti-tumor activity by downregulating tumor-associated macrophages. Furthermore, IL-28B inhibits M2 macrophage polarization in vitro, while also halting M2 macrophage differentiation predominantly via inhibition of the signal transducer and activator of transcription (STAT)3 and c-Jun N-terminal kinase (JNK) signaling pathways. Our findings revealed that IL-28B inhibits M2 macrophages in the tumor microenvironment to delay colon cancer progression. These findings provide novel evidence of IL-28B anti-tumor and immunomodulatory activities.


Subject(s)
Colonic Neoplasms , Tumor-Associated Macrophages , Animals , Antiviral Agents/pharmacology , Cell Line, Tumor , Colonic Neoplasms/metabolism , Macrophages , Mice , Signal Transduction , Tumor Microenvironment
4.
Immune Netw ; 21(3): e21, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34277111

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive activity and are morphologically similar to conventional monocytes and granulocytes. The development and classification of these cells have, however, been controversial. The activation network of MDSCs is relatively complex, and their mechanism of action is poorly understood, creating an avenue for further research. In recent years, MDSCs have been found to play an important role in immune regulation and in effectively inhibiting the activity of effector lymphocytes. Under certain conditions, particularly in the case of tissue damage or inflammation, MDSCs play a leading role in the immune response of the central nervous system. In cancer, however, this can lead to tumor immune evasion and the development of related diseases. Under cancerous conditions, tumors often alter bone marrow formation, thus affecting progenitor cell differentiation, and ultimately, MDSC accumulation. MDSCs are important contributors to tumor progression and play a key role in promoting tumor growth and metastasis, and even reduce the efficacy of immunotherapy. Currently, a number of studies have demonstrated that MDSCs play a key regulatory role in many clinical diseases. In light of these studies, this review discusses the origin of MDSCs, the mechanisms underlying their activation, their role in a variety of clinical diseases, and their function in immune response regulation.

5.
Front Immunol ; 12: 680068, 2021.
Article in English | MEDLINE | ID: mdl-34025679

ABSTRACT

Toll-like receptors (TLRs) play critical roles in regulating the abnormal activation of the immune cells resulting in the pathogenesis of inflammation and autoimmune diseases. Pyruvate kinase M2 (PKM2), which governs the last step of glycolysis, is involved in multiple cellular processes and pathological conditions. However, little is known about the involvement of PKM2 in regulating TLR-mediated inflammation and autoimmunity. Herein, we investigated the role of PKM2 in the activation of the TLR pathways and the pathogenesis of inflammation and autoimmune diseases. The activation of TLR4, TLR7 and TLR9 pathways was found to induce the up-regulation of PKM2 expression in macrophages, dendritic cells (DCs) and B cells. The over-expression of PKM2 promotes the activation of TLR4, TLR7 and TLR9 pathways while interference with the PKM2 expression or the addition of the PKM2 inhibitor (PKM-IN) markedly inhibited the activation of TLR4, TLR7 and TLR9 pathways. Mechanistically, PKM2 augmented the activation of TLR4, TLR7 and TLR9 pathways by promoting the activation of the proline-rich tyrosine kinase 2 (Pyk2). Intriguingly, the PKM2 inhibitor PKM2-IN significantly protected the mice from the endotoxic shock mediated by the TLR4-agonist LPS. Additionally, it alleviated the progression in the TLR7-agonist imiquimod-mediated lupus mice and spontaneous lupus MRL/lpr mice. Moreover, PKM2 expression was highly elevated in the monocytes, DCs and B cells from systemic lupus erythematous (SLE) patients compared with those from the healthy donors. Besides, the PKM2 expression level was positively correlated with the degree of activation of these immune cells. In summary, PKM2 contributed to TLR-mediated inflammation and autoimmunity and can be a valuable target to control inflammation and autoimmunity.


Subject(s)
Autoimmunity , Carrier Proteins/metabolism , Focal Adhesion Kinase 2/metabolism , Inflammation/etiology , Inflammation/metabolism , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Toll-Like Receptors/metabolism , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Carrier Proteins/antagonists & inhibitors , Cell Survival , Disease Models, Animal , Disease Susceptibility , Female , Inflammation/diagnosis , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Lymphocyte Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred MRL lpr , Models, Biological , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/metabolism , Thyroid Hormone-Binding Proteins
6.
Front Immunol ; 12: 807509, 2021.
Article in English | MEDLINE | ID: mdl-35095894

ABSTRACT

Immune-mediated hepatic injury plays a key role in the initiation and pathogenesis of diverse liver diseases. However, treatment choice for immune-mediated hepatic injury remains limited. Corilagin, a natural ellagitannin extracted from various traditional Chinese medicines, has been demonstrated to exhibit multiple pharmacological activities, such as anti-inflammatory, anti-tumor, and hepatoprotective properties. The present study aimed to investigate the effects of corilagin on immune-mediated hepatic injury using a murine model of concanavalin A (Con A)-induced hepatitis, which is well-characterized to study acute immune-mediated hepatitis. Herein, mice were administered corilagin (25 mg/kg) intraperitoneally twice at 12 h intervals, and 1 h later, the mice were challenged with Con A (20 mg/kg body weight); serum and liver samples were collected after 12 h. The results showed that corilagin significantly increased the survival of mice and reduced serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels. In addition, corilagin markedly improved histopathological damage, hepatocyte apoptosis, and oxidative stress in the liver. The activation of M1 macrophages in the hepatic mononuclear cells was also significantly reduced compared with that in the control group. The expression of M1 macrophage-associated proinflammatory cytokines and genes, including interleukin (IL)-6, IL-12, and inducible nitric oxide synthase (iNOS), was also decreased after corilagin treatment. Finally, the results demonstrated that corilagin regulated macrophage polarization by modulating the mitogen-activated protein kinases (MAPK), nuclear factor (NF)-κB, and interferon regulatory factor (IRF) signaling pathways. Thus, the findings indicate that corilagin protects mice from Con A-induced immune-mediated hepatic injury by limiting M1 macrophage activation via the MAPK, NF-κB, and IRF signaling pathways, suggesting corilagin as a possible treatment choice for immune-mediated hepatic injury.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Concanavalin A/adverse effects , Glucosides/pharmacology , Hydrolyzable Tannins/pharmacology , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Animals , Biomarkers , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/drug therapy , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Inflammation Mediators/metabolism , Liver Function Tests , Male , Mice , Treatment Outcome
7.
Inflammation ; 44(2): 671-681, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33083887

ABSTRACT

Fulminant hepatitis (FH) is an acute clinical disease with a poor prognosis and high mortality rate. The purpose of this study was to determine the protective effect of the Toll-like receptor 4 (TLR4) inhibitor TAK-242 on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced explosive hepatitis and explore in vivo and in vitro mechanisms. Mice were pretreated with TAK-242 for 3 h prior to LPS (10 µg/kg)/D-GalN (250 mg/kg) administration. Compared to the LPS/D-GalN group, the TAK-242 pretreatment group showed significantly prolonged survival, reduced serum alanine aminotransferase and aspartate aminotransferase levels, relieved oxidative stress, and reduced inflammatory interleukin (IL)-6, IL-12, and tumor necrosis factor-α levels. In addition, TAK-242 increased the accumulation of myeloid-derived suppressor cells (MDSCs). Next, mice were treated with an anti-Gr-1 antibody to deplete MDSCs, and adoptive transfer experiments were performed. We found that TAK-242 protected against FH by regulating MDSCs. In the in vitro studies, TAK-242 regulated the accumulation of MDSCs and promoted the release of immunosuppressive inflammatory cytokines. In addition, TAK-242 inhibited protein expression of nuclear factor-κB and mitogen-activated protein kinases. In summary, TAK-242 had a hepatoprotective effect against LPS/D-GalN-induced explosive hepatitis in mice. Its protective effect may be involved in suppressing inflammation, reducing oxidative stress, and increasing the proportion of MDSCs.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Liver/drug effects , Massive Hepatic Necrosis/prevention & control , Myeloid-Derived Suppressor Cells/drug effects , Protective Agents/therapeutic use , Sulfonamides/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Drug Administration Schedule , Galactosamine , In Vitro Techniques , Lipopolysaccharides , Liver/immunology , Liver/metabolism , Male , Massive Hepatic Necrosis/etiology , Massive Hepatic Necrosis/immunology , Massive Hepatic Necrosis/metabolism , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Oxidative Stress/drug effects , Protective Agents/pharmacology , Random Allocation , Sulfonamides/pharmacology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...