Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2833, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595757

ABSTRACT

The CRISPR-Cas type V-I is a family of Cas12i-containing programmable nuclease systems guided by a short crRNA without requirement for a tracrRNA. Here we present an engineered Type V-I CRISPR system (Cas12i), ABR-001, which utilizes a tracr-less guide RNA. The compact Cas12i effector is capable of self-processing pre-crRNA and cleaving dsDNA targets, which facilitates versatile delivery options and multiplexing, respectively. We apply an unbiased mutational scanning approach to enhance initially low editing activity of Cas12i2. The engineered variant, ABR-001, exhibits broad genome editing capability in human cell lines, primary T cells, and CD34+ hematopoietic stem and progenitor cells, with both robust efficiency and high specificity. In addition, ABR-001 achieves a high level of genome editing when delivered via AAV vector to HEK293T cells. This work establishes ABR-001 as a versatile, specific, and high-performance platform for ex vivo and in vivo gene therapy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Endonucleases/metabolism , Gene Editing/methods , HEK293 Cells , Humans , RNA/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
2.
Nat Hum Behav ; 4(9): 972-982, 2020 09.
Article in English | MEDLINE | ID: mdl-32848231

ABSTRACT

Despite the widespread implementation of public health measures, coronavirus disease 2019 (COVID-19) continues to spread in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a web and mobile application that collects longitudinal self-reported survey responses on health, behaviour and demographics. Here, we report results from over 500,000 users in the United States from 2 April 2020 to 12 May 2020. We show that self-reported surveys can be used to build predictive models to identify likely COVID-19-positive individuals. We find evidence among our users for asymptomatic or presymptomatic presentation; show a variety of exposure, occupational and demographic risk factors for COVID-19 beyond symptoms; reveal factors for which users have been SARS-CoV-2 PCR tested; and highlight the temporal dynamics of symptoms and self-isolation behaviour. These results highlight the utility of collecting a diverse set of symptomatic, demographic, exposure and behavioural self-reported data to fight the COVID-19 pandemic.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adult , Asymptomatic Diseases/epidemiology , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/psychology , Female , Humans , Longitudinal Studies , Male , Mobile Applications , Models, Statistical , Pandemics/prevention & control , Pandemics/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/psychology , SARS-CoV-2 , United States/epidemiology
3.
Nat Rev Microbiol ; 17(8): 513-525, 2019 08.
Article in English | MEDLINE | ID: mdl-31165781

ABSTRACT

The principal function of CRISPR-Cas systems in archaea and bacteria is defence against mobile genetic elements (MGEs), including viruses, plasmids and transposons. However, the relationships between CRISPR-Cas and MGEs are far more complex. Several classes of MGE contributed to the origin and evolution of CRISPR-Cas, and, conversely, CRISPR-Cas systems and their components were recruited by various MGEs for functions that remain largely uncharacterized. In this Analysis article, we investigate and substantially expand the range of CRISPR-Cas components carried by MGEs. Three groups of Tn7-like transposable elements encode 'minimal' type I CRISPR-Cas derivatives capable of target recognition but not cleavage, and another group encodes an inactivated type V variant. These partially inactivated CRISPR-Cas variants might mediate guide RNA-dependent integration of the respective transposons. Numerous plasmids and some prophages encode type IV systems, with similar predicted properties, that appear to contribute to competition among plasmids and between plasmids and viruses. Many prokaryotic viruses also carry CRISPR mini-arrays, some of which recognize other viruses and are implicated in inter-virus conflicts, and solitary repeat units, which could inhibit host CRISPR-Cas systems.


Subject(s)
CRISPR-Cas Systems , Evolution, Molecular , Gene Transfer, Horizontal , Interspersed Repetitive Sequences , Recombination, Genetic , Archaea/genetics , Bacteria/genetics , Bacteriophages/genetics , DNA Transposable Elements , Plasmids
4.
Science ; 363(6422): 88-91, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30523077

ABSTRACT

Type V CRISPR-Cas systems are distinguished by a single RNA-guided RuvC domain-containing effector, Cas12. Although effectors of subtypes V-A (Cas12a) and V-B (Cas12b) have been studied in detail, the distinct domain architectures and diverged RuvC sequences of uncharacterized Cas12 proteins suggest unexplored functional diversity. Here, we identify and characterize Cas12c, -g, -h, and -i. Cas12c, -h, and -i demonstrate RNA-guided double-stranded DNA (dsDNA) interference activity. Cas12i exhibits markedly different efficiencies of CRISPR RNA spacer complementary and noncomplementary strand cleavage resulting in predominant dsDNA nicking. Cas12g is an RNA-guided ribonuclease (RNase) with collateral RNase and single-strand DNase activities. Our study reveals the functional diversity emerging along different routes of type V CRISPR-Cas evolution and expands the CRISPR toolbox.


Subject(s)
CRISPR-Cas Systems , DNA/chemistry , RNA, Guide, Kinetoplastida/chemistry , Ribonucleases/chemistry , Databases, Protein , Deoxyribonucleases/chemistry , Escherichia coli , Gene Library , Nucleic Acid Conformation
5.
Mol Cell ; 70(2): 327-339.e5, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29551514

ABSTRACT

Bacterial class 2 CRISPR-Cas systems utilize a single RNA-guided protein effector to mitigate viral infection. We aggregated genomic data from multiple sources and constructed an expanded database of predicted class 2 CRISPR-Cas systems. A search for novel RNA-targeting systems identified subtype VI-D, encoding dual HEPN domain-containing Cas13d effectors and putative WYL-domain-containing accessory proteins (WYL1 and WYL-b1 through WYL-b5). The median size of Cas13d proteins is 190 to 300 aa smaller than that of Cas13a-Cas13c. Despite their small size, Cas13d orthologs from Eubacterium siraeum (Es) and Ruminococcus sp. (Rsp) are active in both CRISPR RNA processing and targeting, as well as collateral RNA cleavage, with no target-flanking sequence requirements. The RspWYL1 protein stimulates RNA cleavage by both EsCas13d and RspCas13d, demonstrating a common regulatory mechanism for divergent Cas13d orthologs. The small size, minimal targeting constraints, and modular regulation of Cas13d effectors further expands the CRISPR toolkit for RNA manipulation and detection.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing/methods , RNA, Bacterial/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , Databases, Genetic , Escherichia coli/enzymology , Escherichia coli/genetics , Eubacterium/enzymology , Eubacterium/genetics , Gene Expression Regulation, Bacterial , Nucleic Acid Conformation , Protein Domains , Protein Structure, Secondary , RNA Processing, Post-Transcriptional , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Ruminococcus/enzymology , Ruminococcus/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...