Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38898817

ABSTRACT

The doping of semiconductor materials through some facile and appropriate methods holds significant promise in enhancing the catalytic performance of catalysts. Herein, NiCo2O4/g-C3N4 composite catalysts were synthesized via a high-energy ball milling method. The microstructure and physicochemical characterization of the as-prepared composites confirmed the successful loading of NiCo2O4 nanoparticles onto the g-C3N4 nanosheets. The NiCo2O4/g-C3N4 composites showed excellent catalytic effect under visible light/ultrasonic irradiation, and the efficiency of tetracycline hydrochloride (TCH) degradation reached 90% within 15 min. The optical properties of g-C3N4 nanosheets were improved by doping, and the diffusion of active materials and carrier migration rate were improved by ultrasonic assistance. Possible catalytic mechanisms and potential pathways of the NiCo2O4/g-C3N4 composites for the degradation of TCH triggered by visible light/ultrasonic irradiation were proposed. This study provides a new strategy for energy-assisted photocatalytic degradation of organic pollutants.

2.
ACS Appl Mater Interfaces ; 15(8): 10994-11003, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36789744

ABSTRACT

Wearable sensors based on MXene have attracted attention, but the large-scale production of MXene-based textile materials is still a huge challenge. Hereby, we report a facile way of incorporating MXene into the traditional yarn manufacturing process by dipping and drying MXene into cotton rovings followed by fabricating an MXene/cotton/spandex yarn (MCSY) using friction spinning. The MXene in the MCSY brings electrical conductivity to the MCSY with well-preserved mechanical properties. Due to its wide sensing range from 408 Pa to 10.2 kPa, the MCSY can be used to monitor human motions in real time, such as writing, walking, and wrist bending. In addition, the MCSY exhibits a stable compression sensing performance even under different strains. Furthermore, the MCSY can be sewn into clothing or onto a mask as an embroidery pattern to develop sensing device prototypes capable of detecting touching or breathing. The reported manufacturing technology of the MCSY will lead to an industrial-scale development of MXene-based e-textiles for wearable applications.

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296874

ABSTRACT

The development of wearable electronic devices has greatly stimulated the research interest of textile-based strain sensors, which can effectively combine functionality with wearability. In this work, the fabrication of highly stretchable and compressible strain sensors from weft-knitted spacer fabric was reported. Carbon nanotubes and polypyrrole were deposited on the surface of fabric via an in situ polymerization approach to reduce the electrical resistance. The as-fabricated WSP-CNT-PPy strain sensor exhibits high electrical conductivity and stable strain-sensing performance under different stretching deformations. The WSP-CNT-PPy strain sensor can be stretched up to 450% and compressed to 60% with a pressure of less than 50 KPa, which can be attributed to the unique loop and interval filament structures. The distinguishing response efficiency of WSP-CNT-PPy can effectively detect faint and strenuous body movements. In addition, the electrochemical behavior of WSP-CNT-PPy was also characterized to study the comprehensive properties. The electro-heating performance was also evaluated for feasible Joule heater applications. This work demonstrates the practicability of WSP-CNT-PPy strain sensor fabric for real-time monitoring in promising wearable garments.

4.
ACS Appl Mater Interfaces ; 12(26): 29717-29727, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32517469

ABSTRACT

Flexible electronic devices with strain sensing and energy storage functions integrated simultaneously are urgently desirable to detect human motions for potential wearable applications. This paper reports the fabrication of a cotton/carbon nanotube sheath-core yarn deposited with polypyrrole (PPy) for highly multifunctional stretchable wearable electronics. The microscopic structure and morphology of the prepared sheath-core yarn were characterized by scanning electron microscopy and Fourier transform infrared spectrometry. A mechanical experiment demonstrated its excellent stretchable capacity because of its unique spring-like structure. We demonstrate that the sheath-core yarn can be used as wearable strain sensors, exhibiting an ultrahigh strain sensing range (0-350%) and excellent stability. The sheath-core yarn can be used in highly sensitive real time monitoring toward both subtle and large human motions under different conditions. Furthermore, the electrochemical performance of the sheath-core yarn was characterized by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The measured areal capacitance was 761.2 mF/cm2 at the scanning rate of 1 mV/s. The method of spinning technology may lead to new exploitation of CNTs and PPy in future wearable electronic device applications.


Subject(s)
Wearable Electronic Devices , Microscopy, Electron, Scanning , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Polymers/chemistry , Pyrroles/chemistry , Spectroscopy, Fourier Transform Infrared
5.
ACS Appl Mater Interfaces ; 11(7): 7338-7348, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30673211

ABSTRACT

Flexible wearable devices for various applications have attracted research attention in recent years. To date, it is still a big challenge to fabricate strain sensors with a large workable strain range while maintaining their high sensitivity. Herein, we report the fabrication of highly sensitive wearable strain sensors from braided composite yarns (BYs) by in situ polymerization of polypyrrole (PPy) on the surface of yarns after polydopamine templating (BYs-PDA). The electromechanical performance and strain sensing properties of the fabricated braided composite yarn@polydopamine@polypyrrole (BYs-PDA-PPy) were investigated. Because of the unique braided structure of BYs, the BYs-PDA-PPy strain sensors exhibit fascinating performance, including a large workable strain range (up to 105% strain), high sensitivity (gauge factor of 51.2 in strain of 0%-40% and of 27.6 in strain of 40%-105%), long-term stability and great electrical heating performance. Furthermore, the BYs-PDA-PPy sensors can be used in real-time monitoring subtle and large human motions. The BYs-PDA-PPy strain sensors can also be woven into fabrics for large area electric heating. These results demonstrate the potential of BYs-PDA-PPy in wearable electronics.


Subject(s)
Indoles , Polymers , Pyrroles , Textiles , Wearable Electronic Devices , Humans
6.
ACS Appl Mater Interfaces ; 10(38): 32726-32735, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30176716

ABSTRACT

Incorporation of carbon nanotubes (CNTs) into textiles without sacrificing their intrinsic properties provides a promising platform in exploring wearable technology. However, manufacture of flexible, durable, and stretchable CNT/textile composites on an industrial scale is still a great challenge. We hereby report a facile way of incorporating CNTs into the traditional yarn manufacturing process by dipping and drying CNTs into cotton rovings followed by fabricating CNT/cotton/spandex composite yarn (CCSCY) in sirofil spinning. The existence of CNTs in CCSCY brings electrical conductivity to CCSCY while the mechanical properties and stretchability are preserved. We demonstrate that the CCSCY can be used as wearable strain sensors, exhibiting ultrahigh strain sensing range, excellent stability, and good washing durability. Furthermore, CCSCY can be used to accurately monitor the real-time human motions, such as leg bending, walking, finger bending, wrist activity, clenching fist, bending down, and pronouncing words. We also demonstrate that the CCSCY can be assembled into knitted fabrics as the conductors with electric heating performance. The reported manufacturing technology of CCSCY could lead to an industrial-scale development of e-textiles for wearable applications.

7.
Polymers (Basel) ; 10(5)2018 May 03.
Article in English | MEDLINE | ID: mdl-30966529

ABSTRACT

This work aims to develop durable functional cotton fabrics by growing zinc oxide (ZnO) nanoparticles on polydopamine (PDA) templates. ZnO nanoparticles were grown on the PDA-templated cotton fabrics by the hydrothermal method at room temperature. The surface morphology, chemical composition, and crystalline structure of the ZnO-coated cotton fabrics were characterized by scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The ZnO nanoparticles were found to disperse evenly on the surface of cotton fabrics. The ultraviolet (UV) protection factor (UPF) value of the ZnO-coated cotton fabrics was maintained at 122.5, and 99% reduction in bacterial load was observed against Gluconobacter cerinus even after five cycles of laundering. The PDA was found to be effective in fixing the ZnO seeds tightly on the surface of cotton fabrics, resulting in excellent durability of the coating of ZnO nanoparticles.

8.
Polymers (Basel) ; 10(6)2018 May 23.
Article in English | MEDLINE | ID: mdl-30966602

ABSTRACT

Conductive cotton fabric was prepared by coating single-wall carbon nanotubes (CNTs) on a knitted cotton fabric surface through a "dip-and-dry" method. The combination of CNTs and cotton fabric was analyzed using scanning electron microscopy (SEM) and Raman scattering spectroscopy. The CNTs coating improved the mechanical properties of the fabric and imparted conductivity to the fabric. The electromechanical performance of the CNT-cotton fabric (CCF) was evaluated. Strain sensors made from the CCF exhibited a large workable strain range (0~100%), fast response and great stability. Furthermore, CCF-based strain sensors was used to monitor the real-time human motions, such as standing, walking, running, squatting and bending of finger and elbow. The CCF also exhibited strong electric heating effect. The flexible strain sensors and electric heaters made from CCF have potential applications in wearable electronic devices and cold weather conditions.

9.
Oncotarget ; 8(11): 18312-18321, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28407688

ABSTRACT

NPC-26 is novel mitochondrion-interfering compound. The current study tested its potential effect against colorectal cancer (CRC) cells. We demonstrated that NPC-26 induced potent anti-proliferative and cytotoxic activities against CRC cell lines (HCT-116, DLD-1 and HT-29). Activation of AMP-activated protein kinase (AMPK) signaling mediated NPC-26-induced CRC cell death. AMPKα1 shRNA knockdown or dominant negative mutation abolished NPC-26-induced AMPK activation and subsequent CRC cell death. NPC-26 disrupted mitochondrial function, causing mitochondrial permeability transition pore (mPTP) opening and reactive oxygen species (ROS) production. ROS scavengers (NAC or MnTBAP) and mPTP blockers (cyclosporin A or sanglifehrin A) blocked NPC-26-induced AMPK activation and attenuated CRC cell death. Significantly, intraperitoneal injection of NPC-26 potently inhibited HCT-116 tumor growth in severe combined immuno-deficient (SCID) mice. Yet, its anti-tumor activity was significantly weakened against AMPKα1-silenced HCT-116 tumors. Together, we conclude that NPC-26 kills CRC cells possibly via activating AMPK signaling.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Animals , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Enzyme Activation/drug effects , HCT116 Cells , HT29 Cells , Humans , Mice , Mice, SCID , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...