Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(39): 44136-44146, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36149728

ABSTRACT

In both biomedical research and clinical cell therapy manufacturing, there is a need for cell isolation systems that recover purified cells in the absence of any selection agent. Reported traceless cell isolation methods using engineered antigen-binding fragments or aptamers have been limited to processing a single cell type at a time. There remains an unmet need for cell isolation processes that rapidly sort multiple target cell types. Here, we utilized two aptamers along with their designated complementary strands (reversal agents) to tracelessly isolate two cell types from a mixed cell population with one aptamer-labeling step and two sequential cell elution steps with reversal agents. We engineered a CD71-binding aptamer (rvCD71apt) and a reversal agent pair to be used simultaneously with our previously reported traceless purification approach using the CD8 aptamer (rvCD8apt) and its reversal agent. We verified the compatibility of the two aptamer displacement mechanisms by flow cytometry and the feasibility of incorporating rvCD71apt with a magnetic solid state. We then combined rvCD71apt with rvCD8apt to isolate activated CD4+ T cells and resting CD8+ cells by eluting these target cells into separate fractions with orthogonal strand displacements. This is the first demonstration of isolating different cell types using two aptamers and reversal agents at the same time. Potentially, different or more aptamers can be included in this traceless multiplexed isolation system for diverse applications with a shortened operation time and a lower production cost.


Subject(s)
Aptamers, Nucleotide , SELEX Aptamer Technique , Aptamers, Nucleotide/metabolism , Cell Separation , Flow Cytometry
2.
J Am Chem Soc ; 144(30): 13851-13864, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35875870

ABSTRACT

The clinical manufacturing of chimeric antigen receptor (CAR) T cells includes cell selection, activation, gene transduction, and expansion. While the method of T-cell selection varies across companies, current methods do not actively eliminate the cancer cells in the patient's apheresis product from the healthy immune cells. Alarmingly, it has been found that transduction of a single leukemic B cell with the CAR gene can confer resistance to CAR T-cell therapy and lead to treatment failure. In this study, we report the identification of a novel high-affinity DNA aptamer, termed tJBA8.1, that binds transferrin receptor 1 (TfR1), a receptor broadly upregulated by cancer cells. Using competition assays, high resolution cryo-EM, and de novo model building of the aptamer into the resulting electron density, we reveal that tJBA8.1 shares a binding site on TfR1 with holo-transferrin, the natural ligand of TfR1. We use tJBA8.1 to effectively deplete B lymphoma cells spiked into peripheral blood mononuclear cells with minimal impact on the healthy immune cell composition. Lastly, we present opportunities for affinity improvement of tJBA8.1. As TfR1 expression is broadly upregulated in many cancers, including difficult-to-treat T-cell leukemias and lymphomas, our work provides a facile, universal, and inexpensive approach for comprehensively removing cancerous cells from patient apheresis products for safe manufacturing of adoptive T-cell therapies.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Cell- and Tissue-Based Therapy , Humans , Leukocytes, Mononuclear , Neoplasms/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Transferrin/metabolism , T-Lymphocytes
3.
Angew Chem Int Ed Engl ; 60(39): 21211-21215, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34328683

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has devastated families and disrupted healthcare, economies and societies across the globe. Molecular recognition agents that are specific for distinct viral proteins are critical components for rapid diagnostics and targeted therapeutics. In this work, we demonstrate the selection of novel DNA aptamers that bind to the SARS-CoV-2 spike glycoprotein with high specificity and affinity (<80 nM). Through binding assays and high resolution cryo-EM, we demonstrate that SNAP1 (SARS-CoV-2 spike protein N-terminal domain-binding aptamer 1) binds to the S N-terminal domain. We applied SNAP1 in lateral flow assays (LFAs) and ELISAs to detect UV-inactivated SARS-CoV-2 at concentrations as low as 5×105  copies mL-1 . SNAP1 is therefore a promising molecular tool for SARS-CoV-2 diagnostics.


Subject(s)
Aptamers, Nucleotide/chemistry , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Models, Molecular , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
4.
Acc Chem Res ; 53(9): 1724-1738, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32786336

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has transformed the cancer treatment landscape, utilizing ex vivo modified autologous T cells to treat relapsed or refractory B-cell leukemias and lymphomas. However, the therapy's broader impact has been limited, in part, by a complicated, lengthy, and expensive production process. Accordingly, as CAR T-cell therapies are further advanced to treat other cancers, continual innovation in cell manufacturing will be critical to their successful clinical implementation. In this Account, we describe our research efforts using biomaterials to improve the three fundamental steps in CAR T-cell manufacturing: (1) isolation, (2) activation, and (3) genetic modification.Recognizing that clinical T-cell isolation reagents have high cost and supply constraints, we developed a synthetic DNA aptamer and complementary reversal agent technology that isolates label-free CD8+ T cells with high purity and yield from peripheral blood mononuclear cells. Encouragingly, CAR T cells manufactured from both antibody- and aptamer-isolated T cells were comparable in therapeutic potency. Discovery and design of other T-cell specific aptamers and corresponding reversal reagents could fully realize the potential of this approach, enabling inexpensive isolation of multiple distinct T-cell populations in a single isolation step.Current ex vivo T-cell activation materials do not accurately mimic in situ T-cell activation by antigen presenting cells (APCs). They cause unequal CD4+ and CD8+ T-cell expansion, necessitating separate production of CD4+ and CD8+ CAR T cells for therapies that call for balanced infusion compositions. To address these shortcomings, we designed a panel of biodegradable cell-templated silica microparticles with supported lipid bilayers that display stimulatory ligands for T-cell activation. High membrane fluidity, elongated shape, and rough surface topography, all properties of endogenous APCs, were found to be favorable parameters for activation, promoting unbiased and efficient CD4/CD8 T-cell expansion while not terminally differentiating the cells.Viral and electroporation-based gene delivery systems have various drawbacks. Viral vectors are expensive and have limited cargo sizes, whereas electroporation is highly cytotoxic. Thus, low-cost nonviral platforms that transfect T cells with low cytotoxicity and high efficiency are needed for CAR gene delivery. Our group thus synthesized a panel of cationic polymers with different architectures and evaluated their T-cell transfection ability. We identified a comb-shaped polymer formulation that transfected primary T cells with low cytotoxicity, although transfection efficiency was low compared to conventional methods. Analysis of intracellular and extracellular barriers to transfection revealed low uptake of polyplexes and high endosomal pH in T cells, alluding to biological and polymer properties that could be further improved.These innovations represent just a few recent developments in the biomaterials field for addressing CAR T-cell production needs. Together, these technologies and their future advancement will pave the way for economical and straightforward CAR T-cell manufacturing.


Subject(s)
Biocompatible Materials/chemistry , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Receptors, Chimeric Antigen/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Biocompatible Materials/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Gene Transfer Techniques , Humans , Immunomagnetic Separation/methods , Immunotherapy, Adoptive , Nanostructures/chemistry , Neoplasms/therapy , Polymers/chemistry , Receptors, Chimeric Antigen/genetics , Silicon Dioxide/chemistry
5.
Nat Biomed Eng ; 3(10): 783-795, 2019 10.
Article in English | MEDLINE | ID: mdl-31209354

ABSTRACT

Chimeric antigen receptor T-cell therapies using defined product compositions require high-purity T-cell isolation systems that, unlike immunomagnetic positive enrichment, are inexpensive and leave no trace on the final cell product. Here, we show that DNA aptamers (generated with a modified cell-SELEX procedure to display low-nanomolar affinity for the T-cell marker CD8) enable the traceless isolation of pure CD8+ T cells at low cost and high yield. Captured CD8+ T cells are released label-free by complementary oligonucleotides that undergo toehold-mediated strand displacement with the aptamer. We also show that chimeric antigen receptor T cells manufactured from these cells are comparable to antibody-isolated chimeric antigen receptor T cells in proliferation, phenotype, effector function and antitumour activity in a mouse model of B-cell lymphoma. By employing multiple aptamers and the corresponding complementary oligonucleotides, aptamer-mediated cell selection could enable the fully synthetic, sequential and traceless isolation of desired lymphocyte subsets from a single system.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen , SELEX Aptamer Technique/methods , Animals , Aptamers, Nucleotide , B-Lymphocytes , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Female , Gene Expression Profiling , Male , Mice , Phenotype , Receptors, Chimeric Antigen/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...