Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(14)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708110

ABSTRACT

The bimodal-grain-size 7075 aluminium alloys containing varied ratios of large and small 7075 aluminium powders were prepared by spark plasma sintering (SPS). The large powder was 100 ± 15 µm in diameter and the small one was 10 ± 5 µm in diameter. The 7075 aluminium alloys was completely densified under the 500 °C sintering temperature and 60 MPa pressure. The large powders constituted coarse grain zone, and the small powders constituted fine grain zone in sintered 7075 aluminium alloys. The microstructural and microchemical difference between the large and small powders was remained in coarse and fine grain zones in bulk alloys after SPS sintering, which allowed for us to investigate the effects of microstructure and microchemistry on passive properties of oxide film formed on sintered alloys. The average diameter of intermetallic phases was 201.3 nm in coarse grain zone, while its vale was 79.8 nm in fine grain zone. The alloying element content in intermetallic phases in coarse grain zone was 33% to 48% higher than that on fine grain zone. The alloying element depletion zone surrounding intermetallic phases in coarse grain zone showed a bigger width and a more severe element depletion. The coarse grain zone in alloys showed a bigger electrochemical heterogeneity as compared to fine grain zone. The passive film formed on coarse grain zone had a thicker thickness and a point defect density of 2.4 × 1024 m-3, and the film on fine grain zone had a thinner thickness and a point defect density of 4.0 × 1023 m-3. The film resistance was 3.25 × 105 Ωcm2 on coarse grain zone, while it was 6.46 × 105 Ωcm2 on fine grain zone. The passive potential range of sintered alloys increased from 457 mV to 678 mV, while the corrosion current density decreased from 8.59 × 10-7 A/cm2 to 6.78 × 10-7 A/cm2 as fine grain zone increasing from 0% to 100%, which implied that the corrosion resistance of alloys increased with the increasing content of fine grains. The passive film on coarse grain zone exhibited bigger corrosion cavities after pitting initiation compared to that on fine grain zone. The passive film formed on fine grain zone showed a better corrosion resistance. The protectiveness of passive film was mainly determined by defect density rather than the thickness in this work.

2.
Materials (Basel) ; 13(2)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963694

ABSTRACT

In this study, the phase transition of secondary phase particles in a composite coating is used to estimate the temperature field of the molten pool on a Ti6Al4V alloy in the micro-arc oxidation (MAO) process. The behavior of the sparks and the molten pool during the MAO process was observed in real-time by a long-distance microscope. The microstructures and compositions of the composite coatings were studied by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The results revealed that, for the temperature field distribution range of the molten pool in the active period, the lower limit is 2123 K and the upper limit is not lower than 3683 K. The reason for the multiphase coexistence is that the high-temperature phase is retained by the rapid cooling effect of the electrolyte, and the low-temperature phase is formed due to secondary phase transformation during the long active time of the molten pool temperature field. The strengthening mechanism of the composite coating prepared by adding the secondary phase particles is elemental doping rather than particle enhancement. The secondary phase particles are able to enter the composite coating by adhering to the surface during the cooling process. The secondary phase particles will then be wrapped into the coating in the next active period.

SELECTION OF CITATIONS
SEARCH DETAIL
...