Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 24(9): 1559-1570, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35100427

ABSTRACT

BACKGROUND: Accurate detection is essential for brain metastasis (BM) management, but manual identification is laborious. This study developed, validated, and evaluated a BM detection (BMD) system. METHODS: Five hundred seventy-three consecutive patients (10 448 lesions) with newly diagnosed BMs and 377 patients without BMs were retrospectively enrolled to develop a multi-scale cascaded convolutional network using 3D-enhanced T1-weighted MR images. BMD was validated using a prospective validation set comprising an internal set (46 patients with 349 lesions; 44 patients without BMs) and three external sets (102 patients with 717 lesions; 108 patients without BMs). The lesion-based detection sensitivity and the number of false positives (FPs) per patient were analyzed. The detection sensitivity and reading time of three trainees and three experienced radiologists from three hospitals were evaluated using the validation set. RESULTS: The detection sensitivity and FPs were 95.8% and 0.39 in the test set, 96.0% and 0.27 in the internal validation set, and ranged from 88.9% to 95.5% and 0.29 to 0.66 in the external sets. The BMD system achieved higher detection sensitivity (93.2% [95% CI, 91.6-94.7%]) than all radiologists without BMD (ranging from 68.5% [95% CI, 65.7-71.3%] to 80.4% [95% CI, 78.0-82.8%], all P < .001). Radiologist detection sensitivity improved with BMD, reaching 92.7% to 95.0%. The mean reading time was reduced by 47% for trainees and 32% for experienced radiologists assisted by BMD relative to that without BMD. CONCLUSIONS: BMD enables accurate BM detection. Reading with BMD improves radiologists' detection sensitivity and reduces their reading times.


Subject(s)
Brain Neoplasms , Deep Learning , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/secondary , Humans , Magnetic Resonance Imaging/methods , Retrospective Studies
2.
Front Oncol ; 11: 628824, 2021.
Article in English | MEDLINE | ID: mdl-34604024

ABSTRACT

OBJECTIVES: To assess breast cancer receptor status and molecular subtypes by using the CAIPIRINHA-Dixon-TWIST-VIBE and readout-segmented echo-planar diffusion weighted imaging techniques. METHODS: A total of 165 breast cancer patients were retrospectively recruited. Patient age, estrogen receptor, progesterone receptor, human epidermal growth factorreceptor-2 (HER-2) status, and the Ki-67 proliferation index were collected for analysis. Quantitative parameters (Ktrans, Ve, Kep), semiquantitative parameters (W-in, W-out, TTP), and apparent diffusion coefficient (ADC) values were compared in relation to breast cancer receptor status and molecular subtypes. Statistical analysis were performed to compare the parameters in the receptor status and molecular subtype groups.Multivariate analysis was performed to explore confounder-adjusted associations, and receiver operating characteristic curve analysis was used to assess the classification performance and calculate thresholds. RESULTS: Younger age (<49.5 years, odds ratio (OR) =0.95, P=0.004), lower Kep (<0.704,OR=0.14, P=0.044),and higher TTP (>0.629 min, OR=24.65, P=0.011) were independently associated with progesterone receptor positivity. A higher TTP (>0.585 min, OR=28.19, P=0.01) was independently associated with estrogen receptor positivity. Higher Kep (>0.892, OR=11.6, P=0.047), lower TTP (<0.582 min, OR<0.001, P=0.004), and lower ADC (<0.719 ×10-3 mm2/s, OR<0.001, P=0.048) had stronger independent associations with triple-negative breast cancer (TNBC) compared to luminal A, and those parameters could differentiate TNBC from luminal A with the highest AUC of 0.811. CONCLUSIONS: Kep and TTP were independently associated with hormone receptor status. In addition, the Kep, TTP, and ADC values had stronger independent associations with TNBC than with luminal A and could be used as imaging biomarkers for differentiate TNBC from Luminal A.

SELECTION OF CITATIONS
SEARCH DETAIL
...