Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 622
Filter
1.
J Agric Food Chem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780097

ABSTRACT

As cellular transcription factors and DNA replicators, nuclear factor I (NFI) family members play an important role in mammalian development. However, there is still a lack of research on the muscle regeneration of NFI family members in cattle. In this study, the analysis of NFI family factors was conducted on their characterization, phylogenetics, and functional domains. We found that NFI family members were relatively conserved among different species, but there was heterogeneity in amino acid sequences, DNA coding sequences, and functional domain among members. Furthermore, among NFI family factors, we observed that NFIC exhibited highly expression in bovine muscle tissues, particularly influencing the expression of proliferation marker genes in myoblasts. To investigate the influence of NFIC on myoblast proliferation, we knocked down NFIC (si-NFIC) and found that the proliferation of myoblasts was significantly promoted. In terms of regulation mechanism, we identified that si-NFIC could counteract the inhibitory effect of the cell cycle inhibitor RO-3306. Interestingly, CENPF, as the downstream target gene of NFIC, could affect the expression of CDK1, CCNB1, and actively regulate the cell cycle pathway and cell proliferation. In addition, when CENPF was knocked down, the phosphorylation of p53 and the expression of Bax were increased, but the expression of Bcl2 was inhibited. Our findings mainly highlight the mechanism by which NFIC acts on the CENPF/CDK1 axis to regulate the proliferation of bovine myoblasts.

2.
J Biomed Res ; : 1-11, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38808547

ABSTRACT

The current study aimed to investigate associations of circRNAs and related genetic variants with risk of prostate cancer (PCa) as well as to elucidate biological mechanisms underlying the associations. By using the MiOncoCirc database, we first compared expression levels of circRNAs between 25 paired PCa and adjacent normal tissues to identify risk-associated circRNAs. We then used logistic regression models to evaluate associations between genetic variants in candidate circRNAs and PCa risk among 4662 prostate cancer patients and 3114 healthy controls, and identified circHIBADH rs11973492 as a significant risk-associated variant (odds ratio = 1.20, 95% confidence interval: 1.08-1.34, P = 7.06 × 10 -4) in a dominant genetic model, which altered the secondary structure of the corresponding RNA chain. In the in silico analysis, we found circHIBADH to sponge and silence 21 RNA-binding proteins (RPBs) enriched in the RNA splicing pathway, among which HNRNPA1 was identified and validated as a hub RBP using an external RNA-sequencing data as well as the in-house (four tissue samples) and publicly available single-cell transcriptomes. Additionally, we demonstrated that HNRNPA1 might influence hallmarks including MYC, DNA repair, and E2F target signaling pathways, thereby promoting carcinogenesis. In conclusion, genetic variants in circHIBADH may act as a sponge and inhibitor of RNA splicing-associated RBPs including HNRNPA1, playing an oncogenic role in PCa.

3.
J Adv Res ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38702028

ABSTRACT

INTRODUCTION: Renal cell carcinoma (RCC) is one of the most common malignant tumors of the urinary system and accounts for more than 90 % of all renal tumors. Resistance to targeted therapy has emerged as a pivotal factor that contributes to the progressive deterioration of patients with advanced RCC. Metabolic reprogramming is a hallmark of tumorigenesis and progression, with an increasing body of evidence indicating that abnormal lipid metabolism plays a crucial role in the advancement of renal clear cell carcinoma. OBJECTIVES: Clarify the precise mechanisms underlying abnormal lipid metabolism and drug resistance. METHODS: Bioinformatics screening and analyses were performed to identify hub gene. qRT-PCR, western blot, chromatin immunoprecipitation (ChIP) assays, and other biological methods were used to explore and verify related pathways. Various cell line models and animal models were used to perform biological functional experiments. RESULTS: In this study, we identified Mesoderm induction early response 2 (MIER2) as a novel biomarker for RCC, demonstrating its role in promoting malignancy and sunitinib resistance by influencing lipid metabolism in RCC. Mechanistically, MIER2 facilitated P53 deacetylation by binding to HDAC1. Acetylation modification augmented the DNA-binding stability and transcriptional function of P53, while deacetylation of P53 hindered the transcriptional process of PGC1A, leading to intracellular lipid accumulation in RCC. Furthermore, Trichostatin A (TSA), an inhibitor of HDAC1, was found to impede the MIER2/HDAC1/P53/PGC1A pathway, offering potential benefits for patients with sunitinib-resistant renal cell cancer. CONCLUSION: Our findings highlight MIER2 as a key player in anchoring HDAC1 and inhibiting PGC1A expression through the deacetylation of P53, thereby inducing lipid accumulation in RCC and promoting drug resistance. Lipid-rich RCC cells compensate for energy production and sustain their own growth in a glycolysis-independent manner, evading the cytotoxic effects of targeted drugs and ultimately culminating in the development of drug resistance.

4.
Small ; : e2401635, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607950

ABSTRACT

Vapor-driven smart Janus materials have made significant advancements in intelligent monitoring, control, and interaction, etc. Nevertheless, the development of ultrafast response single-layer Janus membrane, along with a deep exploration of the smart response mechanisms, remains a long-term endeavor. Here, the successful synthesis of a high-crystallinity single-layer Covalent organic framework (COF) Janus membrane is reported by morphology control. This kind of membrane displays superior mechanical properties and specific surface area, along with excellent responsiveness to CH2Cl2 vapor. The analysis of the underlying mechanisms reveals that the vapor-induced breathing effect of the COF and the stress mismatch of the Janus structure play a crucial role in its smart deformation performance. It is believed that this COF Janus membrane holds promise for complex tasks in various fields.

5.
Nano Lett ; 24(14): 4248-4255, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557042

ABSTRACT

Grain boundaries (GBs) in two-dimensional (2D) covalent organic frameworks (COFs) unavoidably form during the fabrication process, playing pivotal roles in the physical characteristics of COFs. Herein, molecular dynamics simulations were employed to elucidate the fracture failure and thermal transport mechanisms of polycrystalline COFs (p-COFs). The results revealed that the tilt angle of GBs significantly influences out-of-plane wrinkles and residual stress in monolayer p-COFs. The tensile strength of p-COFs can be enhanced and weakened with the tilt angle, which exhibits an inverse relationship with the defect density. The crack always originates from weaker heptagon rings during uniaxial tension. Notably, the thermal transport in p-COFs is insensitive to the GBs due to the variation of minor polymer chain length at defects, which is abnormal for other 2D crystalline materials. This study contributes insights into the impact of GBs in p-COFs and offers theoretical guidance for structural design and practical applications of advanced COFs.

6.
J Transl Med ; 22(1): 366, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632662

ABSTRACT

BACKGROUND: Early-onset prostate cancer (EOPC, ≤ 55 years) has a unique clinical entity harboring high genetic risk, but the majority of EOPC patients still substantial opportunity to be early-detected thus suffering an unfavorable prognosis. A refined understanding of age-based polygenic risk score (PRS) for prostate cancer (PCa) would be essential for personalized risk stratification. METHODS: We included 167,517 male participants [4882 cases including 205 EOPC and 4677 late-onset PCa (LOPC)] from UK Biobank. A General-, an EOPC- and an LOPC-PRS were derived from age-specific genome-wide association studies. Weighted Cox proportional hazard models were applied to estimate the risk of PCa associated with PRSs. The discriminatory capability of PRSs were validated using time-dependent receiver operating characteristic (ROC) curves with additional 4238 males from PLCO and TCGA. Phenome-wide association studies underlying Mendelian Randomization were conducted to discover EOPC linking phenotypes. RESULTS: The 269-PRS calculated via well-established risk variants was more strongly associated with risk of EOPC [hazard ratio (HR) = 2.35, 95% confidence interval (CI) 1.99-2.78] than LOPC (HR = 1.95, 95% CI 1.89-2.01; I2 = 79%). EOPC-PRS was dramatically related to EOPC risk (HR = 4.70, 95% CI 3.98-5.54) but not to LOPC (HR = 0.98, 95% CI 0.96-1.01), while LOPC-PRS had similar risk estimates for EOPC and LOPC (I2 = 0%). Particularly, EOPC-PRS performed optimal discriminatory capability for EOPC (area under the ROC = 0.613). Among the phenomic factors to PCa deposited in the platform of ProAP (Prostate cancer Age-based PheWAS; https://mulongdu.shinyapps.io/proap ), EOPC was preferentially associated with PCa family history while LOPC was prone to environmental and lifestyles exposures. CONCLUSIONS: This study comprehensively profiled the distinct genetic and phenotypic architecture of EOPC. The EOPC-PRS may optimize risk estimate of PCa in young males, particularly those without family history, thus providing guidance for precision population stratification.


Subject(s)
Genetic Risk Score , Prostatic Neoplasms , Humans , Male , Genome-Wide Association Study , Cohort Studies , Risk Factors , Genetic Predisposition to Disease
7.
Proc Natl Acad Sci U S A ; 121(16): e2317978121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593069

ABSTRACT

Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.


Subject(s)
Aedes , Flavivirus Infections , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Mice , Flavivirus/genetics , Zika Virus/genetics , Ubiquitin/metabolism , Ligases/metabolism , Viral Proteins/metabolism , Mammals
8.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669573

ABSTRACT

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Subject(s)
Aedes , Dengue Virus , Mosquito Vectors , Symbiosis , Zika Virus , Animals , Aedes/microbiology , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Zika Virus/physiology , Dengue/transmission , Dengue/virology , Dengue/prevention & control , Gastrointestinal Microbiome , Acetobacteraceae/physiology , Female , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Flavivirus/physiology , Flavivirus/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology
9.
ACS Nano ; 18(15): 10485-10494, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38564695

ABSTRACT

Producing high-quality two-dimensional (2D) covalent organic frameworks (COFs) is crucial for industrial applications. However, this remains significantly challenging with current synthetic techniques. A deep understanding of the intermolecular interactions, reaction temperature, and oligomers is essential to facilitate the growth of highly crystalline COF films. Herein, molecular dynamics simulations were employed to explore the growth of 2D COFs from monomer assemblies on graphene. Our results showed that chain growth reactions dominated the COF surface growth and that van der Waals (vdW) interactions were important in enhancing the crystallinity through monomer preorganization. Moreover, appropriately tuning the reaction temperature improved the COF crystallinity and minimized the effects of amorphous oligomers. Additionally, the strength of the interface between the COF and the graphene substrate indicated that the adhesion force was proportional to the crystallinity of the COF. This work reveals the mechanisms for nucleation and growth of COFs on surfaces and provides theoretical guidance for fabricating high-quality 2D polymer-based crystalline nanomaterials.

10.
J Virol ; 98(5): e0157323, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38572974

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterized by dysregulated immune response. Studies have shown that the SARS-CoV-2 accessory protein ORF7b induces host cell apoptosis through the tumor necrosis factor alpha (TNF-α) pathway and blocks the production of interferon beta (IFN-ß). The underlying mechanism remains to be investigated. In this study, we found that ORF7b facilitated viral infection and production, and inhibited the RIG-I-like receptor (RLR) signaling pathway through selectively interacting with mitochondrial antiviral-signaling protein (MAVS). MAVS439-466 region and MAVS Lys461 were essential for the physical association between MAVS and ORF7b, and the inhibition of the RLR signaling pathway by ORF7b. MAVSK461/K63 ubiquitination was essential for the RLR signaling regulated by the MAVS-ORF7b complex. ORF7b interfered with the recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) and the activation of the RLR signaling pathway by MAVS. Furthermore, interfering peptides targeting the ORF7b complex reversed the ORF7b-suppressed MAVS-RLR signaling pathway. The most potent interfering peptide V disrupts the formation of ORF7b tetramers, reverses the levels of the ORF7b-inhibited physical association between MAVS and TRAF6, leading to the suppression of viral growth and infection. Overall, this study provides a mechanism for the suppression of innate immunity by SARS-CoV-2 infection and the mechanism-based approach via interfering peptides to potentially prevent SARS-CoV-2 infection.IMPORTANCEThe pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and continues to be a threat to public health. It is imperative to understand the biology of SARS-CoV-2 infection and find approaches to prevent SARS-CoV-2 infection and ameliorate COVID-19. Multiple SARS-CoV-2 proteins are known to function on the innate immune response, but the underlying mechanism remains unknown. This study shows that ORF7b inhibits the RIG-I-like receptor (RLR) signaling pathway through the physical association between ORF7b and mitochondrial antiviral-signaling protein (MAVS), impairing the K63-linked MAVS polyubiquitination and its recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) to MAVS. The most potent interfering peptide V targeting the ORF7b-MAVS complex may reverse the suppression of the MAVS-mediated RLR signaling pathway by ORF7b and prevent viral infection and production. This study may provide new insights into the pathogenic mechanism of SARS-CoV-2 and a strategy to develop new drugs to prevent SARS-CoV-2 infection.


Subject(s)
Adaptor Proteins, Signal Transducing , COVID-19 , DEAD Box Protein 58 , SARS-CoV-2 , Signal Transduction , TNF Receptor-Associated Factor 6 , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Humans , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , TNF Receptor-Associated Factor 6/metabolism , DEAD Box Protein 58/metabolism , HEK293 Cells , COVID-19/virology , COVID-19/immunology , COVID-19/metabolism , Ubiquitination , Receptors, Immunologic/metabolism , Animals , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Interferon-beta/metabolism , Apoptosis , Immunity, Innate , Tumor Necrosis Factor-alpha/metabolism
11.
Int J Biol Macromol ; 268(Pt 1): 131704, 2024 May.
Article in English | MEDLINE | ID: mdl-38670198

ABSTRACT

Mosquitoes form a vital group of vector insects, which can transmit various diseases and filarial worms. The cuticle is a critical structure that protects mosquitoes from adverse environmental conditions and penetration resistance. Thus, cuticle proteins can be used as potential targets for controlling the mosquito population. In the present study, we found that AaCPR100A is a structural protein in the soft cuticle, which has flexibility and elasticity allowing insects to move or fly freely, of Aedes aegypti. RNA interference (RNAi) of AaCPR100A caused high mortality in Aedes aegypti larvae and adults and significantly decreased the egg hatching rate. Transmission electron microscopy (TEM) analysis revealed that the larval microstructure had no recognizable endocuticle in AaCPR100A-deficient mosquitoes. A yeast two-hybrid assay was performed to screen proteins interacting with AaCPR100A. We verified that the G12-like protein had the strongest interaction with AaCPR100A using yeast two-hybrid and GST pull-down assays. Knockdown of G12-like transcription resulted in high mortality in Ae. aegypti larvae, but not in adults. Interestingly, RNAi of G12-like rescued the high mortality of adults caused by decreased AaCPR100A expression. Additionally, adults treated with G12-like dsRNA were found to be sensitive to low temperature, and their eggshell formation and hatching were decreased. Overall, our results demonstrated that G12-like may interacts with AaCPR100A, and both G12-like and AaCPR100A are involved in Ae. aegypti cuticle development and eggshell formation. AaCPR100A and G12-like can thus be considered newly potential targets for controlling the Ae. aegypti mosquito.


Subject(s)
Aedes , Insect Proteins , Animals , Aedes/genetics , Aedes/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/metabolism , Larva/growth & development , RNA Interference , Protein Binding , Two-Hybrid System Techniques
12.
Mol Biotechnol ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526683

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is a fatal disease with poor survival. Increasing evidence show that hypoxia-induced exosomes are associated with cancer progression. Here, we aimed to investigate the function of hsa_circ_0007678 (circR3HCC1L) and hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD progression. Through the exoRBase 2.0 database, we screened for a circular RNA circR3HCC1L related to PAAD. Changes of circR3HCC1L in PAAD samples and cells were analyzed with real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, migration, invasion were analyzed by colony formation, cell counting, and transwell assays. Measurements of glucose uptake and lactate production were done using corresponding kits. Several protein levels were detected by western blotting. The regulation mechanism of circR3HCC1L was verified by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Exosomes were separated by differential ultracentrifugation. Animal experiments were used to verify the function of hypoxia-derived exosomal circR3HCC1L. CircR3HCC1L was upregulated in PAAD samples and hypoxic PAAD cells. Knockdown of circR3HCC1L decreased hypoxia-driven PAAD cell proliferation, migration, invasion, and glycolysis. Hypoxic PAAD cell-derived exosomes had higher levels of circR3HCC1L, hypoxic PAAD cell-derived exosomal circR3HCC1L promoted normoxic cancer cell malignant transformation and glycolysis in vitro and xenograft tumor growth in mouse models in vivo. Mechanistically, circR3HCC1L regulated pyruvate kinase M2 (PKM2) expression via sponging miR-873-5p. Also, PKM2 overexpression or miR-873-5p silencing offset circR3HCC1L knockdown-mediated effects on hypoxia-challenged PAAD cell malignant transformation and glycolysis. Hypoxic PAAD cell-derived exosomal circR3HCC1L facilitated PAAD progression through the miR-873-5p/PKM2 axis, highlighting the contribution of hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD.

13.
Arthritis Res Ther ; 26(1): 76, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515127

ABSTRACT

BACKGROUND: Autoimmune responses have been suggested to involvement in patients with Behcet's syndrome (BS). There has been growing attention towards the roles of cutaneous lymphocyte antigen (CLA)+ regular T cells (Tregs) in autoimmune diseases. The role of CLA+ Tregs in BS is still uncertain. This study aims to clarify the impact of CLA+ Tregs on BS. METHODS: We collected peripheral blood from a total of 107 patients with BS and 114 healthy controls (HCs). The number of CLA+ Tregs, natural killer (NK) cells, B cells, and several subtypes of CD4+ T cells were detected using flow cytometry and compared between patients and HCs. RESULTS: The absolute number and proportion of CLA+ Tregs among CD4+ T lymphocytes and CD4+ Tregs were lower in patients with BS than in HCs. CLA+ Tregs were positively related with NK cells (r = 0.500, P < 0.001) and B cells (r = 0.470, P < 0.001) and negatively related with effector T cells (r=-0.402, P < 0.001) in patients with BS. Patients with BS and arterial aneurysms had CLA+ Treg cell deficiency. A decreased proportion of CLA+ Tregs was associated with arterial aneurysms in patients with BS. The proportion of CLA+ Tregs in patients with BS increased with corticosteroids and immunosuppressants. CONCLUSION: CLA+ Tregs decrease in association with arterial aneurysm in patients with BS. CLA+ Tregs may be a predictor of response to BS treatment.


Subject(s)
Aneurysm , Behcet Syndrome , Sialyl Lewis X Antigen/analogs & derivatives , Humans , Clinical Relevance , Oligosaccharides , T-Lymphocytes, Regulatory
14.
Genomics ; 116(2): 110817, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38431031

ABSTRACT

Perilipin-2 (PLIN2) can anchor to lipid droplets (LDs) and play a crucial role in regulating nascent LDs formation. Bimolecular fluorescence complementation (BiFC) and flow cytometry were examined to verify the PLIN2-CGI-58 interaction efficiency in bovine adipocytes. GST-Pulldown assay was used to detect the key site arginine315 function in PLIN2-CGI-58 interaction. Experiments were also examined to research these mutations function of PLIN2 in LDs formation during adipocytes differentiation, LDs were measured after staining by BODIPY, lipogenesis-related genes were also detected. Results showed that Leucine (L371A, L311A) and glycine (G369A, G376A) mutations reduced interaction efficiencies. Serine (S367A) mutations enhanced the interaction efficiency. Arginine (R315A) mutations resulted in loss of fluorescence in the cytoplasm and disrupted the interaction with CGI-58, as verified by pulldown assay. R315W mutations resulted in a significant increase in the number of LDs compared with wild-type (WT) PLIN2 or the R315A mutations. Lipogenesis-related genes were either up- or downregulated when mutated PLIN2 interacted with CGI-58. Arginine315 in PLIN2 is required for the PLIN2-CGI-58 interface and could regulate nascent LD formation and lipogenesis. This study is the first to study amino acids on the PLIN2 interface during interaction with CGI-58 in bovine and highlight the role played by PLIN2 in the regulation of bovine adipocyte lipogenesis.


Subject(s)
Arginine , Lipid Droplets , Animals , Cattle , Perilipin-2/genetics , Perilipin-2/chemistry , Perilipin-2/metabolism , Arginine/genetics , Arginine/metabolism , Lipid Droplets/metabolism , Mutation , Adipocytes/metabolism , Lipid Metabolism
15.
EMBO J ; 43(9): 1690-1721, 2024 May.
Article in English | MEDLINE | ID: mdl-38378891

ABSTRACT

Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.


Subject(s)
Aedes , Zika Virus , Animals , Aedes/virology , Aedes/metabolism , Female , Zika Virus/physiology , Mice , Dengue Virus/physiology , Salivary Proteins and Peptides/metabolism , Mosquito Vectors/virology , Insect Proteins/metabolism , Myeloid Cells/virology , Myeloid Cells/metabolism , Zika Virus Infection/transmission , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Dengue/transmission , Dengue/virology , Dengue/metabolism , NF-kappa B/metabolism , Signal Transduction , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics
16.
J Biomed Res ; 38(2): 149-162, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38410974

ABSTRACT

Genetic variants in super-enhancers (SEs) are increasingly implicated as a disease risk-driving mechanism. Previous studies have reported an associations between benzo[a]pyrene (BaP) exposure and some malignant tumor risk. Currently, it is unclear whether BaP is involved in the effect of genetic variants in SEs on prostate cancer risk, nor the associated intrinsic molecular mechanisms. In the current study, by using logistic regression analysis, we found that rs5750581T>C in 22q-SE was significantly associated with prostate cancer risk (odds ratio = 1.26, P = 7.61 × 10 -5). We also have found that the rs6001092T>G, in a high linkage disequilibrium with rs5750581T>C ( r 2 = 0.98), is located in a regulatory aryl hydrocarbon receptor (AhR) motif and may interact with the FAM227A promoter in further bioinformatics analysis. We then performed a series of functional and BaP acute exposure experiments to assess biological function of the genetic variant and the target gene. Biologically, the rs6001092-G allele strengthened the transcription factor binding affinity to AhR, thereby upregulating FAM227A, especially upon exposure to BaP, which induced the malignant phenotypes of prostate cancer. The current study highlights that AhR acts as an environmental sensor of BaP and is involved in the SE-mediated prostate cancer risk, which may provide new insights into the etiology of prostate cancer associated with the inherited SE variants under environmental carcinogen stressors.

17.
Viruses ; 16(2)2024 02 02.
Article in English | MEDLINE | ID: mdl-38400018

ABSTRACT

Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Animals , Humans , Flavivirus/genetics , Zika Virus/genetics , Zika Virus/metabolism , Virulence , Virus Replication , Proteins/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Antiviral Agents/metabolism , Mammals
18.
World J Gastroenterol ; 30(2): 158-169, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38312121

ABSTRACT

BACKGROUND: Tumor budding (TB) has emerged as a promising independent prognostic biomarker in colorectal cancer (CRC). The prognostic role of TB has been extensively studied and currently affects clinical decision making in patients with stage I and II CRC. However, existing prognostic studies on TB in stage III CRC have been confined to small retrospective cohort studies. Consequently, this study investigated the correlation among TB categories, clinicopathological features, and prognosis in stage III-IV CRC to further enhance the precision and individualization of treatment through refined prognostic risk stratification. AIM: To analyze the relationship between TB categories and clinicopathological characteristics and assess their prognostic value in stage III-IV CRC to further refine the prognostic risk stratification of stage III-IV CRC. METHODS: The clinical data of 547 CRC patients were collected for this retrospective study. Infiltration at the front edge of the tumor buds was counted according to the 2016 International Tumor Budding Consensus Conference guidelines. RESULTS: Multivariate Cox proportional hazards regression analysis demonstrated that chemotherapy (P = 0.004), clinical stage IV (P < 0.001), ≥ 4 regional lymph node metastases (P = 0.004), left-sided colonic cancer (P = 0.040), and Bd 2-3 (P = 0.002) were independent prognostic factors in patients with stage III-IV CRC. Moreover, the density of tumor infiltrating lymphocytes was higher in Bd 1 than in Bd 2-3, both in the tumor stroma and its invasive margin. CONCLUSION: TB has an independent predictive prognostic value in patients with stage III-IV CRC. It is recommended to complete the TB report of stage III-IV CRC cases in the standardized pathological report to further refine risk stratification.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Prognosis , Retrospective Studies , Neoplasm Staging , Colorectal Neoplasms/pathology , Colonic Neoplasms/pathology
19.
J Agric Food Chem ; 72(6): 2911-2924, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38303491

ABSTRACT

The intramuscular fat (IMF) content of beef determined the meat quality, and the market value of beef varies with different breeds. To provide some new approaches for improving meat quality and cattle breed improvement, 24-month-old Qinchuan cattle (Q, n = 6), Nanyang cattle (N, n = 6), and Japanese black cattle (J, n = 6) were selected. IMF content of the J group (16.92 ± 1.08%) is remarkably higher than that of indigenous Chinese cattle (Q, 13.38 ± 1.08%, and N, 12.35 ± 1.22%). Monounsaturated fatty acids and polyunsaturated fatty acids in the J group are higher than the Q and creatine, lysine, and glutamine are the three most abundant amino acids in beef, which contribute to the flavor formation. Similarly, IMF content-related genes were enriched in four vital KEGG pathways, including fatty acid metabolism, biosynthesis of unsaturated fatty acids, fatty acid elongation, and insulin resistance. Moreover, weighted genes coexpression network analysis (WGCNA) revealed that ITGB1 is the critical gene associated with the IMF content. This study compares transcriptome and metabolome of local and high-IMF cattle breeds, providing data for native cattle breeding and improvement of beef quality.


Subject(s)
Meat , Transcriptome , Cattle/genetics , Animals , Fatty Acids, Unsaturated/metabolism , Metabolome , Muscle, Skeletal/metabolism
20.
Ann Med ; 56(1): 2309607, 2024 12.
Article in English | MEDLINE | ID: mdl-38300888

ABSTRACT

OBJECTIVE: Accumulating evidence suggests that differentially expressed circular RNAs (circRNAs) play critical roles in immune cells of systemic lupus erythematosus (SLE) patients. Hsa_circ_0000479 has been studied in the field of cancer and infection, whereas seldom studied in autoimmune diseases. The aim of this study was to investigate the role and clinical value of neutrophil hsa_circ_0000479 in SLE. METHODS: The expression levels of hsa_circ_0000479 in both healthy individuals and SLE patients' neutrophils were detected by qPCR and compared with those in peripheral blood mononuclear cells (PBMCs) . In addition, the correlation of hsa_circ_0000479 levels in neutrophils with the clinical and immunological features of SLE patients was also analysed. RESULTS: The expression levels of hsa_circ_0000479 in the patients with SLE were significantly higher in neutrophils than that of PBMCs, and also significantly higher than that in healthy controls (HCs). Moreover, the expression levels of hsa_circ_0000479 in neutrophils were negatively associated with absolute neutrophil count and complement 3 (C3), whereas positively correlated with anti-dsDNA and anti-nucleosome antibodies in SLE. In addition, SLE patients with higher levels of hsa_circ_0000479 demonstrated more several clinical manifestations, including Raynaud's phenomenon, alopecia and leucopenia. CONCLUSIONS: Hsa_circ_0000479 is up-regulated in neutrophils of SLE patients, and is also associated with several important laboratory indicators and clinical manifestations, suggesting that hsa_circ_0000479 in neutrophils was one of probable factors involved in the pathogenesis of SLE with potential clinical value.


Hsa_circ_0000479 was expressed in neutrophils and was considerably higher than that of PBMCs in SLE patients.The neutrophil hsa_circ_0000479 was correlated with laboratory parameters, including NEUT, C3, anti-dsDNA antibodies and AnuA, in addition to being associated with Raynaud's phenomenon, alopecia, and leucopenia in patients with SLE.Hsa_circ_0000479 in neutrophils may play an influential role in SLE patients and will be important to understand the pathogenesis, stratification and treatment in SLE.


Subject(s)
Lupus Erythematosus, Systemic , Neutrophils , Humans , Neutrophils/metabolism , Leukocytes, Mononuclear/metabolism , RNA, Circular/metabolism , Lupus Erythematosus, Systemic/genetics , Leukocyte Count
SELECTION OF CITATIONS
SEARCH DETAIL
...