Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Nutr ; 7(4): 1162-1172, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34754958

ABSTRACT

This study was conducted to evaluate the effect of pyridoxine on the development of hair follicles in Rex rabbits and the underlying molecular mechanism. Two hundred 3-month-old Rex rabbits were randomly divided into 5 groups and fed diets supplemented with 0, 5, 10, 20, or 40 mg/kg pyridoxine. The hair follicle density on the dorsal skin and the gene and protein expression levels of components of the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB or Akt), Wnt, Notch and bone morphogenetic protein (BMP) signalling pathways were measured. In addition, free hair follicles were isolated from Rex rabbits and cultured with pyridoxine in vitro to measure hair shaft growth. Furthermore, dermal papilla cells (DPC) were isolated from the skin of Rex rabbits and cultured with pyridoxine in vitro to measure the gene and protein expression levels of components of the PI3K/Akt, Wnt, Notch and BMP signalling pathways. The results showed that the addition of dietary pyridoxine significantly increased the total follicle density, secondary follicle density, and secondary-to-primary ratio (S/P, P < 0.05), that the growth ratio of hair stems was promoted by pyridoxine in basic culture medium, and that the growth length of tentacle hair follicles cultured in the pyridoxine group was longer than that in the control group (P < 0.05). In addition, pyridoxine changed the DPC cycle progression and promoted cell proliferation, and appropriate concentrations of pyridoxine (10 and 20 µmol/L) significantly inhibited cell apoptosis (P < 0.05). Pyridoxine significantly affected the gene expression of components of the PI3K/Akt, Wnt and Notch signalling pathways in the skin and DPC of Rex rabbits (P < 0.05), increased the levels of phosphorylated catenin beta 1 (CTNNB1) and Akt, and decreased the level of phosphorylated glycogen synthase kinase 3 beta (GSK-3ß) (P < 0.05). Therefore, the molecular mechanism by which pyridoxine promotes hair follicle density in Rex rabbits probably occurs through activation of the PI3K/Akt, Wnt and Notch signalling pathways, prolonging hair follicle growth and delaying the onset of telogen.

2.
Front Vet Sci ; 7: 251, 2020.
Article in English | MEDLINE | ID: mdl-32582771

ABSTRACT

The beef cattle rumen is a heterogenous microbial ecosystem that is necessary for the host to digest food and support growth. The importance of the rumen microbiota (RM) is also widely recognized for its critical roles in metabolism and immunity. The level of health is indicated by a dynamic RM distribution. We performed high-throughput sequencing of the bacterial 16S rRNA gene to compare microbial populations between rumens in beef cattle with or without doxycycline treatment to assess dynamic microbiotic shifts following antibiotic administration. The results of the operational taxonomic unit analysis and alpha and beta diversity calculations showed that doxycycline-treated beef cattle had lower species richness and bacterial diversity than those without doxycycline. Bacteroidetes was the predominant phylum in rumen samples without doxycycline, while Proteobacteria was the governing phylum in the presence of doxycycline. On the family level, the top three predominant populations in group qlqlwy (not treated with doxycycline) were Prevotellaceae, Lachnospiraceae, and Ruminococcaceae, compared to Xanthomonadaceae, Prevotellaceae, and Rikenellaceae in group qlhlwy (treated with doxycycline). At the genus level, the top predominant population in group qlqlwy was unidentified_Prevotellaceae. However, in group qlhlwy, the top predominant population was Stenotrophomonas. The results revealed significant RM differences in beef cattle with or without doxycycline. Oral doxycycline may induce RM composition differences, and bacterial richness may also influence corresponding changes that could guide antibiotic use in adult ruminants. This study is the first to assess microbiota distribution in beef cattle rumen after doxycycline administration.

SELECTION OF CITATIONS
SEARCH DETAIL
...