Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 355: 127271, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35526711

ABSTRACT

The inhibitory roles of hydroxylamine (NH2OH) and hydrazine (N2H4) on nitrite-oxidizing bacteria were investigated in a comparative study. The results showed that nitrite accumulation was achieved by adding 5 mg-N/L NH2OH or N2H4 to two parallel sequencing batch reactors, with nitrite accumulation rate reaching 95.83% and 86.58% within 15 days after adopting aeration time control, respectively. Correspondingly, the maximum level of NO in typical cycles caused by NH2OH addition was 0.18 mg-N/L, which was higher than obtained for N2H4. NH2OH or N2H4 showed strong inhibition on Nitrospira and promoted the enrichment of Nitrosomonas, with the effects of NH2OH being more significant. However, nitritation began to deteriorate after the cessation of inhibitors addition. In conclusion, NH2OH was a better inhibitor than N2H4 for Nitrospira. The inhibitory role of NH2OH was primarily related to NO toxicity, while for N2H4 it was attributed to its own toxicity, with NO playing a smaller role.


Subject(s)
Nitrification , Nitrites , Ammonia , Bacteria , Bioreactors/microbiology , Hydrazines , Hydroxylamine/pharmacology , Hydroxylamines , Oxidation-Reduction
2.
ACS Omega ; 7(2): 1883-1892, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35252635

ABSTRACT

The production of coalbed methane (CBM) wells varies greatly in the Qinshui Basin, North China. Analyzing the primary factors controlling the CBM well productivity is essential to improve their development efficiency. Based on the geological conditions and production data of CBM wells in the Zheng zhuang area, the principal component analysis (PCA) method was used to classify the drainage types and screen the key factors influencing the production of gas and water. The drainage types of the CBM wells in the study area can be divided into four categories. The gas production shows an increasing trend with the increase of the comprehensive score of the PCA. The key controlling factors of productivity for CBM wells can be summarized by the gas-bearing property, permeability, groundwater fluid potential, and burial depth. The impact of burial depth on CBM well productivity is manifested in its control of gas content and permeability. The groundwater flows to a low fluid potential area, which leads to a high water production and a small pressure drop. The gas production shows a positive correlation with post-fracturing permeability. The gas content is a key factor for controlling the critical desorption pressure, critical gas production pressure, and pressure drop at the gas breakthrough point. High gas content is a prerequisite for the high productivity of CBM wells.

SELECTION OF CITATIONS
SEARCH DETAIL
...