Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 197: 106470, 2024 May.
Article in English | MEDLINE | ID: mdl-38574497

ABSTRACT

In this study, the pollution status of antibiotics and ARGs in sediments from the land-sea intersection of Liaodong Bay was analyzed. The results showed that the level of antibiotic pollution ranged from ND to 433.27 ng/kg, with quinolones and tetracycline as the dominant antibiotics. The relative abundance of ARGs ranged from 3.62 × 10-3 to 1.32 × 10-1 copies/16SrRNA copies, with aminoglycoside and MLSB resistance genes being dominant. Regarding spatial distribution, the land and estuary areas showed higher antibiotic pollution levels than the offshore areas. Similarly, the land and estuary areas exhibited higher antibiotic diversity than the offshore areas. The ARGs were widely distributed on land, and their abundance gradually decreased to the downstream estuary area. Land and coastal areas exhibited higher ARG diversity than estuary areas. Analysis of environmental factors revealed a significant correlation between ARGs and non-corresponding antibiotics, and some ARGs were affected by heavy metals Cu and Pb.


Subject(s)
Anti-Bacterial Agents , Bays , Genes, Bacterial , Environmental Monitoring/methods , China , Drug Resistance, Microbial/genetics
2.
Mar Pollut Bull ; 192: 114978, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209659

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) are commonly found in the environment as components of brominated flame retardants. Due to their potential impact on human health and wildlife, it is imperative to closely monitor and manage their levels in the environment. This study investigated the spatial distribution, sources, and ecological risks of PBDEs and HBCDs in Jiaozhou Bay (JZB), a large bay situated on the eastern coast of China. The results showed that PBDE concentrations ranged from not detected (ND) to 7.93 ng/L in the water and ND to 65.76 ng/g in the sediment, while HBCD concentrations ranged from ND to 0.31 ng/L in the water and ND to 16.63 ng/g in the sediment. Furthermore, we observed significantly higher concentrations of PBDEs and HBCDs in the inner JZB compared to the outer JZB. Our source apportionment analysis showed that PBDEs primarily originated from the production and debromination of BDE-209, as well as the emission of commercial PeBDEs, whereas HBCDs in sediments mostly stemmed from anthropogenic activities and river input. Finally, our eco-logical risk assessment highlighted the need for continuous monitoring of PBDEs in JZB sediments. Overall, our study aims to provide valuable assistance for the environmental management of the JZB bay area, which is characterized by a complex net-work of rivers and a thriving economy.


Subject(s)
Environmental Monitoring , Halogenated Diphenyl Ethers , Humans , Halogenated Diphenyl Ethers/analysis , Environmental Monitoring/methods , China , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...