Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Food Res Int ; 186: 114350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729698

ABSTRACT

In this study, three types of ß-sitosterol-based oleogels (ß-sitosterol + Î³-oryzanol oleogels, ß-sitosterol + lecithin, oleogels and ß-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the ß-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, ß-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.


Subject(s)
Emulsions , Organic Chemicals , Sitosterols , Xanthophylls , Sitosterols/chemistry , Xanthophylls/chemistry , Organic Chemicals/chemistry , Biological Availability , Lipolysis , Lecithins/chemistry , Fatty Acids/chemistry , Phenylpropionates
2.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543018

ABSTRACT

Que Zui tea (QT) is an important herbal tea in the diet of the 'Yi' people, an ethnic group in China, and it has shown significant antioxidant, anti-inflammatory, and hepatoprotective effects in vitro. This study aims to explore the protective effects of the aqueous-ethanol extract (QE) taken from QT against ᴅ-galactose (ᴅ-gal)-induced oxidative stress damage in mice and its potential mechanisms. QE was identified as UHPLC-HRMS/MS for its chemical composition and possible bioactive substances. Thus, QE is rich in phenolic and flavonoid compounds. Twelve compounds were identified, the main components of which were chlorogenic acid, quinic acid, and 6'-O-caffeoylarbutin. Histopathological and biochemical analysis revealed that QE significantly alleviated brain, liver, and kidney damage in ᴅ-gal-treated mice. Moreover, QE remarkably attenuated oxidative stress by activating the Nrf2/HO-1 pathway to increase the expression of antioxidant indexes, including GSH, GSH-Px, CAT, SOD, and T-AOC. In addition, QE administration could inhibit the IL-1ß and IL-6 levels, which suppress the inflammatory response. QE could noticeably alleviate apoptosis by inhibiting the expressions of Caspase-3 and Bax proteins in the brains, livers, and kidneys of mice. The anti-apoptosis mechanism may be related to the upregulation of the SIRT1 protein and the downregulation of the p53 protein induced by QE in the brain, liver, and kidney tissues of mice. Molecular docking analysis demonstrated that the main components of QE, 6'-O-caffeoylarbutin, chlorogenic acid, quinic acid, and robustaside A, had good binding ability with Nrf2 and SIRT1 proteins. The present study indicated that QE could alleviate ᴅ-gal-induced brain, liver and kidney damage in mice by inhibiting the oxidative stress and cell apoptosis; additionally, the potential mechanism may be associated with the SIRT1/Nrf2 signaling pathway.


Subject(s)
Antioxidants , Arbutin/analogs & derivatives , Caffeic Acids , Galactose , Humans , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Galactose/adverse effects , NF-E2-Related Factor 2/metabolism , Sirtuin 1/metabolism , Chlorogenic Acid/pharmacology , Molecular Docking Simulation , Quinic Acid/pharmacology , Oxidative Stress , Signal Transduction , Tea
3.
Anal Chem ; 96(11): 4682-4692, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38450485

ABSTRACT

Accurate and rapid differentiation and authentication of agricultural products based on their origin and quality are crucial to ensuring food safety and quality control. However, similar chemical compositions and complex matrices often hinder precise identification, particularly for adulterated samples. Herein, we propose a novel method combining multiplex surface-enhanced Raman scattering (SERS) fingerprinting with a one-dimensional convolutional neural network (1D-CNN), which enables the effective differentiation of the category, origin, and grade of agricultural products. This strategy leverages three different SERS-active nanoparticles as multiplex sensors, each tailored to selectively amplify the signals of preferentially adsorbed chemicals within the sample. By strategically combining SERS spectra from different NPs, a 'SERS super-fingerprint' is constructed, offering a more comprehensive representation of the characteristic information on agricultural products. Subsequently, utilizing a custom-designed 1D-CNN model for feature extraction from the 'super-fingerprint' significantly enhances the predictive accuracy for agricultural products. This strategy successfully identified various agricultural products and simulated adulterated samples with exceptional accuracy, reaching 97.7% and 94.8%, respectively. Notably, the entire identification process, encompassing sample preparation, SERS measurement, and deep learning analysis, takes only 35 min. This development of deep learning-assisted multiplex SERS fingerprinting establishes a rapid and reliable method for the identification and authentication of agricultural products.


Subject(s)
Deep Learning , Nanoparticles , Spectrum Analysis, Raman/methods , Food Safety
4.
Plant Foods Hum Nutr ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441843

ABSTRACT

The flowers of Edgeworthia gardneri are used as herbal tea and medicine to treat various metabolic diseases including hyperglycemia, hypertension, and hyperlipidemia. This paper investigate the chemical constituents and biological activities of ethanolic extract and its different fractions from E. gardneri flowers. Firstly, the E. gardneri flowers was extracted by ethanol-aqueous solution to obtain crude extract (CE), which was subsequently fractionated by different polar organic solution to yield precipitated crystal (PC), dichloromethane (DCF), ethyl acetate (EAF), n-butanol (n-BuF), and residue water (RWF) fractions. UHPLC-ESI-HRMS/MS analysis resulted in the identification of 25 compounds, and the main compounds were flavonoids and coumarins. The precipitated crystal fraction showed the highest phenolic and flavonoid contents with 344.4 ± 3.38 mg GAE/g extract and 305.86 ± 0.87 mg RE/g extract. The EAF had the strongest antioxidant capacity and inhibitory effect on α-glucosidase and pancreatic lipase with IC50 values of 126.459 ± 7.82 and 23.16 ± 0.79 µg/mL. Besides, both PC and EAF significantly regulated the glucose and lipid metabolism disorders by increasing glucose consumption and reducing TG levels in HepG2 cells. Molecular docking results suggested that kaempferol-3-O-glucoside and tiliroside had good binding ability with enzymes, indicating that they may be potential α-glucosidase and pancreatic lipase inhibitors. Therefore, the E. gardneri flowers could be served as a bioactive agent for the regulation of metabolic disorders.

5.
Nutrients ; 15(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836459

ABSTRACT

Alcoholic liver disease (ALD), leading to the most common chronic liver diseases, is increasingly emerging as a global health problem, which is intensifying the need to develop novel treatments. Herein, our work aimed to estimate the therapeutic efficacy of red rice (Oryza sativa L.) seed coat on ALD and further uncover the underlying mechanisms. Red rice seed coat extract (RRA) was obtained with citric acid-ethanol and analyzed via a widely targeted components approach. The potential targets of RRA to ALD were predicted by bioinformatics analysis. Drunken behavior, histopathological examination, liver function, gut microbiota composition and intestinal barrier integrity were used to assess the effects of RRA (RRAH, 600 mg/kg·body weight; RRAL, 200 mg/kg·body weight) on ALD. Oxidative stress, inflammation, apoptosis associated factors and signaling pathways were measured by corresponding kits, Western blot and immunofluorescence staining. In ALD model mice, RRA treatment increased sphingosine kinase 2 (SPHK2) and sphingosine-1-phosphate (S1P) levels, improved gut microbiota composition, restored intestinal barrier, decreased lipopolysaccharide (LPS) levels in plasma and the liver, cut down Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-κB) pathways, alleviated liver pathological injury and oxidative stress, attenuated inflammation and apoptosis and enhanced liver function. To sum up, RRA targeting SPHK2 can ameliorate ALD by repairing intestinal barrier damage and reducing liver LPS level via the TLR4/NF-κB pathway and intestinal microbiota, revealing that red rice seed coat holds potential as a functional food for the prevention and treatment of ALD.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Oryza , Mice , Animals , Oryza/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver/metabolism , Inflammation/metabolism , Body Weight , Mice, Inbred C57BL
6.
Int J Mol Sci ; 24(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37833954

ABSTRACT

Acute hepatitis (AH) is a common liver disease with an increasing number of patients each year, requiring the development of new treatments. Hence, our work aimed to evaluate the therapeutic effect of Oryza sativa L. indica (purple rice) seed coat on concanavalin A (ConA)-induced AH and further reveal its potential mechanisms. Purple rice seed coat extract (PRE) was extracted with hydrochloric acid ethanol and analyzed through a widely targeted components method. We evaluated the effects of PRE on AH through histopathological examination, liver function, gut microbiota composition, and the intestinal barrier. The potential targets of PRE on AH were predicted by bioinformatics. Western blotting, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining, and corresponding kits were used to investigate PRE effects on predicting targets and associated signaling pathways in AH mice. In AH model mice, PRE treatment increased transformed mouse 3T3 cell double minute 2 (MDM2) expression to inhibit apoptosis; it also markedly downregulated protein kinase C alpha (PKCα), prostaglandin-endoperoxide synthase 1 (PTGS1), and mitogen-activated protein kinase 1 (MAPK1) activity to alleviate inflammation. Thus, PRE treatment also recovered the intestinal barrier, decreased the lipopolysaccharide (LPS) levels of plasma and the liver, enhanced liver function, and improved the composition of intestinal microbiota. In general, PRE targeting MDM2, PKCα, MAPK1, and PTGS1 ameliorated ConA-induced AH by attenuating inflammation and apoptosis, restoring the intestinal barrier, enhancing the liver function, and improving the gut microbiota, which revealed that the purple rice seed coat might hold possibilities as a therapeutic option for AH.


Subject(s)
Hepatitis , Oryza , Humans , Animals , Mice , Oryza/metabolism , Concanavalin A/toxicity , Concanavalin A/metabolism , Tumor Suppressor Protein p53/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Protein Kinase C-alpha/metabolism , Hepatitis/drug therapy , Hepatitis/etiology , Hepatitis/metabolism , Signal Transduction , Acute Disease , Inflammation , Proto-Oncogene Proteins c-mdm2/metabolism
7.
Int J Mol Sci ; 24(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37628832

ABSTRACT

The aim of this study was to investigate the chemical composition and antioxidant capacity of various polar fractions obtained from Dendrobium fimbriatum Hook (DH). First, a 90% ethanol-aqueous extract of DH (CF) was subjected to sequential fractionation using different organic solvents, resulting in the isolation of a methylene chloride fraction (DF), an ethyl acetate fraction (EF), an n-butanol fraction (BF), and a remaining water fraction (WF) after condensation. Additionally, the CF was also subjected to column chromatography via a D101 macroreticular resin column, eluted with ethanol-aqueous solution to yield six fractions (0%, 20%, 40%, 60%, 80%, and 100%). UPLC-Q-Exactive Orbitrap-MS/MS analysis identified a total of 47 chemical compounds from these polar fractions, including fatty acids, amino acids, phenolic acids, flavonoids, organic heterocyclic molecules, and aromatic compounds. Moreover, DF, EF, and the 60%, 80%, and 100% ethanol-aqueous fractions had higher total phenol content (TPC) and total flavonoid content (TFC) values and greater 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS-) and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging abilities. In H2O2-induced HepG2 cells, the aforementioned fractions could increase the activities of antioxidative enzymes NAD(P)H: quinone oxidoreductase 1 (NQO1), superoxide dismutase (SOD), heme oxygenase-1 (HO-1) and catalase (CAT), stimulate glutathione (GSH) synthesis by increasing the activities of glutamic acid cysteine ligase (GCL) and glutathione synthetase (GS), regulate GSH metabolism by increasing glutathione peroxidase (GSH-Px) and glutathione reductase (GR) activities, and reduce levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, the antioxidative stress effect of the DH fractions was found to be positively correlated with the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) protein and the presence of antioxidative chemical constituents. In conclusion, this study highlights the efficacy of both liquid-liquid extraction and macroporous resin purification techniques in the enrichment of bioactive compounds from natural food resources. The comprehensive analysis of chemical constituents and antioxidant effects of different polar fractions from Dendrobium fimbriatum Hook contributes to the understanding of its potential application in functional foods and nutraceuticals.


Subject(s)
Antioxidants , Dendrobium , Antioxidants/pharmacology , Hydrogen Peroxide , Tandem Mass Spectrometry , Glutathione
8.
Steroids ; 199: 109290, 2023 11.
Article in English | MEDLINE | ID: mdl-37549776

ABSTRACT

In this study, we synthesized androsta-4,14-diene-3,16-dione, 12ß-hydroxyandrosta-4,14-diene-3,16-dione, and other 3,16-androstenedione derivatives from commercially available dehydroepiandrosterone as a starting material in 9-13 steps with high yields. The bioactivity of the obtained compounds was evaluated. Compounds 14a and 23a were shown to have high antitumor activity against acute lymphoblastic leukemia cell lines Nalm-6 and BALL-1, respectively. Network pharmacology analysis showed that the anti-leukemia activity of compounds 14a and 23a might be related to the JAK2, ABL1 protein, and PI3K/Akt signaling pathways. The molecular docking of compounds 14a and 23a identified possible active sites, with the lowest docking scores for PTGS2 and MAPK14, respectively. In addition, the absorption, distribution, metabolism, and excretion prediction results revealed the drug-likeness of the two compounds. Therefore, compounds 14a and 23a should be considered anti-leukemia candidates in future studies.


Subject(s)
Androstenedione , Phosphatidylinositol 3-Kinases , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
9.
Foods ; 12(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37509795

ABSTRACT

In today's food industry, the potential of bioactive compounds in preventing many chronic diseases has garnered significant attention. Many delivery systems have been developed to encapsulate these unstable bioactive compounds. Emulsion gels, as colloidal soft-solid materials, with their unique three-dimensional network structure and strong mechanical properties, are believed to provide excellent protection for bioactive substances. In the context of constructing carriers for bioactive materials, proteins are frequently employed as emulsifiers or gelling agents in emulsions or protein gels. However, in emulsion gels, when protein is used as an emulsifier to stabilize the oil/water interface, the gelling properties of proteins can also have a great influence on the functionality of the emulsion gels. Therefore, this paper aims to focus on the role of proteins' emulsifying and gelling properties in emulsion gels, providing a comprehensive review of the formation and modification of protein-based emulsion gels to build high-quality emulsion gel systems, thereby improving the stability and bioavailability of embedded bioactive substances.

10.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513352

ABSTRACT

Anneslea fragrans Wall., popularly known as "Pangpo tea", is an edible, medicinal, and ornamental plant of the Family Theaceae. The leaves of A. fragrans were historically applied for the treatment of liver and intestinal inflammatory diseases in China. This study aimed to explore the hepatoprotective agents from A. fragrans leaves through hepatoprotective and anti-inflammatory assessment. The phytochemical investigation of the leaves of A. fragrans resulted in the isolation and identification of a total of 18 chemical compounds, including triterpenoids, aliphatic alcohol, dihydrochalcones, chalcones, flavanols, phenolic glycoside, and lignans. Compounds 1-2, 4-6, 11-12, and 16-18 were identified from A. fragrans for the first time. Compounds 7 and 14 could significantly alleviate hepatocellular damage by decreasing the contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and inhibit the hepatocellular apoptosis in the HepG2 cells induced by N-acetyl-p-aminophenol (APAP). In addition, compounds 7 and 14 inhibited reactive oxygen species (ROS) and malondialdehyde (MDA) contents and increased the catalase (CAT) superoxide dismutase (SOD), and glutathione (GSH) levels for suppressing APAP-induced oxidative stress. Additionally, compounds 7, 13, and 14 also had significant anti-inflammatory effects by inhibiting interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) productions on LPS-induced RAW246.7 cells.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Liver , Protective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Glutathione/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Aspartate Aminotransferases/metabolism , Alanine Transaminase/metabolism
11.
Food Chem Toxicol ; 179: 113973, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37506865

ABSTRACT

Anneslea fragrans Wall. (AF) is an important medicinal and edible plant in China. The principal objectives of this study are to explore the hepatoprotective effect of ethanol-aqueous (AFE) and hot-water (AFW) extracts in vitro and in vivo. UPLC-ESI-MS/MS analysis showed that AFW and AFE are rich in dihydrochalcones. Both AFW and AFE significantly up-regulated the expressions of SOD, CAT and GSH, reduced the MDA content in acetaminophen (APAP)-induced HepG2 cells, and suppressed the expressions of NO, TNF-α, IL-1ß, and IL-6 in LPS-induced RAW246.7 cells. In APAP-induced mice, AFW and AFE administration significantly decreased the plasma levels of AST and ALT, and improved liver tissue damage, the collagen deposition and fibrosis formation. Moreover, AFW and AFE decreased the MDA and ROS accumulations via activating Nrf2 pathway to increase the hepatic GSH contents and activities of SOD, CAT, HO-1, and NQO-1, reduced the levels of NO, TNF-α, IL-1ß, and IL-6 by suppressing the JNK/p38/ERK/NF-κB pathways, and alleviated apoptosis via regulating Bcl-2, Bax, caspase-3/9 protein expressions. This study provides a new sight that AFW and AFE may have a potential natural resource for the treatment of liver injury.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Mice , Animals , Acetaminophen/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ethanol/metabolism , Interleukin-6/metabolism , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Liver , Superoxide Dismutase/metabolism , Water , Chemical and Drug Induced Liver Injury/metabolism , Oxidative Stress , NF-E2-Related Factor 2/metabolism
12.
Anal Bioanal Chem ; 415(19): 4649-4660, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37306781

ABSTRACT

This study proposes a nitrogen and sulfur co-doped carbon dot (N/S-CD)-based FRET ratiometric fluorescence aptasensing strategy modulated with entropy-driven DNA amplifier for sensitive and accurate detection of ochratoxin A (OTA). In the strategy, a duplex DNA probe containing OTA aptamer and complementary DNA (cDNA) is designed as a recognition and transformation element. Upon sensing of target OTA, the cDNA was liberated, and triggered a three-chain DNA composite-based entropy-driven DNA circuit amplification, making CuO probes anchor on a magnetic bead (MB). The CuO-encoded MB complex probe is finally turned into abundant Cu2+, which oxidizes o-phenylenediamine (oPD) to generate 2,3-diaminophenazine (DAP) with yellow fluorescence and further triggers FRET between the blue fluorescent N/S-CDs and DAP. The changes in ratiometric fluorescence are related to the OTA concentration. Originating from the synergistic amplifications from the entropy-driven DNA circuits and Cu2+ amplification, the strategy dramatically enhanced detection performance. A limit of detection as low as 0.006 pg/mL of OTA was achieved. Significantly, the aptasensor can visually evaluate the OTA via on-site visual screening. Moreover, the high-confidence quantification of the OTA in real samples with results consistent with that of the LC-MS method indicated that the proposed strategy has practical application prospects for sensitive and accurate quantification in food safety.


Subject(s)
Quantum Dots , Nitrogen/chemistry , Sulfur/chemistry , Quantum Dots/chemistry , Entropy , Fluorescence Resonance Energy Transfer , DNA/chemistry
13.
Plant Foods Hum Nutr ; 78(2): 407-418, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37266882

ABSTRACT

Anneslea fragrans Wall., an edible and medicinal plant, is traditionally used to treat liver and gastrointestinal diseases. This paper aimed to investigate the influence of ultra-high pressure (UHP) pretreatment on the phenolics profiling, antioxidant, and cytoprotective activities of free (FP), esterified (EP), and bound (BP) phenolics from A. fragrans leaves. A total of 32 compounds were characterized and quantified. The davidigenin (44.46 and 113.37 mg/g extract) was the highest in A. fragrans leaves. The vitexin (9), afzelin (10), coreopsin (15), and davidigenin (28) were analyzed with MS2 fragment pathways. Results showed that UHP treated A. fragrans leaves had higher total phenolic (TPC) and total flavonoid (TFC) contents of FP, EP, and BP fractions than those in the raw leaves. Moreover, UHP pretreated A. fragrans leaves had higher scavenging activities on DPPH+• and ABTS+•, and inhibitory effects on the intracellular ROS generation in H2O2-induced HepG2 cells. UFP showed the highest inhibition of ROS production among the samples. Therefore, UHP pretreatment method might be used as an effective strategy for elevating the availabilities of A. fragrans leaves to develop functional foods.


Subject(s)
Antioxidants , Hydrogen Peroxide , Antioxidants/analysis , Reactive Oxygen Species/metabolism , Plant Extracts/chemistry , Phenols/analysis , Plant Leaves/chemistry
14.
Int J Biol Macromol ; 242(Pt 1): 124839, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37172703

ABSTRACT

In this study, superior modified starch was prepared using ultrasonic and enzymatic treatments to confirm the potential of using adlay seed starch (ASS) in Pickering emulsions. Octenyl succinic anhydride (OSA)-modified starches, such as OSA-UASS, OSA-EASS, and OSA-UEASS, were prepared using ultrasonic, enzymatic, and combined ultrasonic and enzymatic treatments, respectively. The effects of these treatments on the structure and properties of ASS were evaluated to elucidate their influence on starch modification. Ultrasonic and enzymatic treatments improved the esterification efficiency of ASS by changing its external and internal morphological characteristics and the crystalline structure to provide more binding sites for esterification. The degree of substitution (DS) of ASS modified by these pretreatments was 22.3-51.1 % higher than that of the OSA-modified starch without pretreatment (OSA-ASS). Fourier transform infrared and X-ray photoelectron spectroscopy results confirmed the esterification. Small particle size and near-neutral wettability indicated that OSA-UEASS was the promising emulsification stabilizer. The emulsion prepared using OSA-UEASS exhibited better emulsifying activity and emulsion stability and long-term stability for up to 30 days. These amphiphilic granules with improved structure and morphology were used to stabilize a Pickering emulsion.


Subject(s)
Starch , Succinic Anhydrides , Emulsions/chemistry , Esterification , Seeds , Starch/chemistry , Succinic Anhydrides/chemistry
15.
Phytomedicine ; 115: 154854, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37156058

ABSTRACT

BACKGROUND: Liver fibrosis is a crucial progress to deteriorate liver disease. E Se tea (ES) is an ethnic herbal tea in China that has various biological activities for human beings. However, the traditional application on the treatment of liver disease is not studied. PURPOSE: This study is firstly performed to explore the chemical constituents of ES extract together with its anti-hepatic fibrosis effect and potential mechanism on CCl4 treated mice. STUDY DESIGN AND METHODS: The chemical constituents of ethanol-aqueous extract from ES (ESE) were analyzed by UPLC-ESI-MS/MS. The anti-hepatic fibrosis effect of ESE was determined by measuring ALT and AST activities, antioxidative indexes, inflammatory cytokines and collagen protein levels on CCl4 treated mice. Moreover, H&E, Masson staining and immunohistochemical analysis were performed for evaluating the protective effect of ESE on histopathological changes of liver tissues. RESULTS: UHPLCHRESI-MS/MS analysis showed that the ESE was rich in flavonoids such as phlorizin, phloretin, quercetin and hyperoside. ESE could significantly reduce the plasma AST and ALT activities. The cytokines (IL-6, TNF-α, IL-1ß) expressions were inhibited after ESE administration via suppressing NF-κB pathway. In addition, ESE could decrease MDA accumulation for alleviating CCl4 induced liver oxidative stress via regulating Nrf2 pathway to promote the expressions of antioxidant enzymes (SOD, HO-1, CAT and NQO1). Moreover, ESE could inhibit the expressions of TGF-ß1, Smad2, α-SMA, and collagens Ⅰ and III proteins, thereby effectively alleviate the liver fibrosis. CONCLUSION: This study demonstrated that ESE could alleviate liver fibrosis through enhancing antioxidant and anti-inflammatory abilities by Nrf2/NF-κB pathway and reducing deposition of liver fibrosis via suppressing TGF-ß/Smad pathway.


Subject(s)
NF-kappa B , Transforming Growth Factor beta1 , Rats , Humans , Mice , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/metabolism , Tandem Mass Spectrometry , Signal Transduction , Rats, Sprague-Dawley , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver , Cytokines/metabolism , Tea , Carbon Tetrachloride/toxicity
16.
Food Chem X ; 18: 100656, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37008719

ABSTRACT

Drying treatments are an effective method of preserving the beneficial properties of postharvest mushrooms. The effects of natural-air drying (ND), hot-air drying (HD), vacuum-freeze drying (FD), heat pump drying (HPD) and microwave-vacuum drying (MVD) on the microstructure, flavor- and health-related compounds of F. velutipes root were investigated. The results showed that FD had the least impact on the microstructure of F. velutipes root and its original porous fiber structure appeared complete. It also possessed the highest content of volatile compounds. MVD gave the highest contents of umami amino acids, total phenolics and total flavonoids, and its extract exhibited high antioxidant activity. In addition, different drying treatments had significant effect on the chemical components of F. velutipes root, with FD and MVD may be the potent drying strategies for preservation of flavor and nutraceuticals respectively. Therefore, our results provided essential data support for F. velutipes root processing and functional product development.

17.
Food Chem Toxicol ; 175: 113752, 2023 May.
Article in English | MEDLINE | ID: mdl-37004906

ABSTRACT

Anneslea Fragrans Wall. (AF) is a medicinal and edible plant distributed in China. Its leaves and barks are generally used for the treatments of diarrhea, fever, and liver diseases. While its ethnopharmacological application against liver diseases has not been fully studied. This study was aimed to evaluate the hepatoprotective effect of ethanolic extract from A. fragrans (AFE) on CCl4 induced liver injury in mice. The results showed that AFE could effectively reduce plasma activities of ALT and AST, increase antioxidant enzymes activities (SOD and CAT) and GSH level, and decrease MDA content in CCl4 induced mice. AFE effectively decreased the expressions of inflammatory cytokines (IL-1ß, IL-6, TNF-α, COX-2 and iNOS), cell apoptosis-related proteins (Bax, caspase-3 and caspase-9) and increased Bcl-2 protein expression via inhibiting MAPK/ERK pathway. Additionally, TUNEL staining, Masson and Sirius red staining, immunohistochemical analyses revealed that AFE could inhibit the CCl4-induced hepatic fibrosis formation via reducing depositions of α-SMA, collagen I and collagen III proteins. Conclusively, the present study demonstrated that AFE had an hepatoprotective effect by suppressing MAPK/ERK pathway to inhibit oxidative stress, inflammatory response and apoptosis in CCl4-induced liver injury mice, suggesting that AFE might be served as a hepatoprotective ingredient in the prevention and treatment of liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Mice , Animals , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/metabolism , Liver , Oxidative Stress , Antioxidants/pharmacology , Apoptosis , Ethanol/metabolism , Chemical and Drug Induced Liver Injury/metabolism
18.
Phytochemistry ; 209: 113639, 2023 May.
Article in English | MEDLINE | ID: mdl-36889562

ABSTRACT

Gardneria distincta P. T. Li is traditionally applied as a herbal medicine for treatment various ailments, and is mainly distributed in Southwestern China. Under the guided separation of MS/MS-based molecular networking, eight undescribed oxindole alkaloids, gardistines A-H, as well as 17 known alkaloids were discovered from the whole parts of Gardneria distincta. Structural elucidation of these undescribed alkaloids was performed by various spectroscopic methods. Gardistine A is a rare oxindole gardneria alkaloid bearing an ester carbonyl group attached to C-18, which is the second reported alkaloid of oxindole gardneria-type. All of the identified monoterpene indole alkaloids were investigated for their anti-inflammatory activity in LPS-induced RAW 264.7 cells. Gardistines A-B and akuammidine demonstrated significant inhibitory effects on the expressions of nitric oxide, tumor necrosis factor alpha, and interleukin-6 at 20 µM.


Subject(s)
Alkaloids , Tandem Mass Spectrometry , Oxindoles , Alkaloids/pharmacology , Indole Alkaloids/chemistry , Anti-Inflammatory Agents/pharmacology , Molecular Structure
19.
Food Funct ; 14(5): 2432-2443, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36786681

ABSTRACT

Dihydrochalcones are important bioactive ingredients in plants. Anneslea fragrans is an edible and medicinal plant, and its leaves are rich in dihydrochalcones. Confusoside (CF) is the most abundant dihydrochalcone in A. fragrans leaves, which is traditionally used in the treatment of liver diseases. The aim of this study was to investigate the hepatoprotective effect of CF on acetaminophen (APAP)-induced hepatic injury in mice. CF could reduce the levels of AST, ALT, and LDH in the serum and enhance the antioxidant activity by activating the Nrf2 signaling pathway to increase the activities of antioxidant enzymes (SOD and CAT), and the GSH content but decrease the MDA accumulation in liver tissues. Immunofluorescence assay and western blotting analysis showed that CF can regulate Nrf2 into the cell nucleus, thereby promoting the expression of downstream antioxidant-related proteins, including NQO1 and HO-1. In addition, CF could inhibit the liver inflammatory response by suppressing the activation of the NF-κB signaling pathway to reduce the expressions of TNF-α, IL-1ß, IL-6, and NO. Molecular docking results showed that there was good binding between the CF and Keap1-Nrf2 protein. Western blotting and TUNEL analysis also revealed CF-inhibited cell apoptosis-related protein expression (Bcl2 and caspase-3/9 proteins). Thus, the CF from A. fragrans leaves could be served as an alternative hepaprotective agent for the treatment and prevention of APAP-induced liver injury.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Animals , Mice , Acetaminophen/adverse effects , Antioxidants/metabolism , Caspases/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Liver/metabolism , Molecular Docking Simulation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress , Signal Transduction
20.
J Ethnopharmacol ; 307: 116232, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36764561

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Elsholtzia bodinieri Vaniot, perennial herbs, a traditional Yunnan Chinese herbal medicine. Its whole herb can be used as commonly used herbs to cure fever, headache, inflammation, indigestion etc., and its tender tip can also be used as tea in Yunnan of China. However, the protective mechanism of Elsholtzia bodinieri Vaniot on acute lung injury (ALI) still needs to be explored. AIM OF STUDY: ALI is characterized by acute respiratory inflammation, which remains a significant source of morbidity and mortality. The current study with the aim of determining the therapeutic the efficacy of E. bodinieri Vaniot on lipopolysaccharide-induced ALI, moreover uncovered the underlying gene-regulated framework, so E. bodinieri Vaniot might serve as functional food for adjuvant therapy or therapeutic agent. MATERIALS AND METHODS: These potential pharmacological targets of E. bodinieri Vaniot against ALI were analyzed by multiple bioinformatics databases. E. bodinieri Vaniot methanol extract (EBE) was obtained by ultrasonic-assisted extraction method, and detected by UHPLC-ESI-HRMS/MS. These pyroptosis, inflammation and oxidative stress associated factors were measured using ELISA assay, western blotting, and histopathological examination to assess the effects of EBE. EcoTyper and immunofluorescence staining were employed to estimate macrophage polarization states in ALI lungs tissue. RESULTS: In ALI lung tissues, EBE treatment could increase B cell leukemia/lymphoma 2 (BCL2) to inhibit pyroptosis, downregulate prostaglandin-endoperoxide synthase 2 (PTGS2) to attenuate inflammation, upregulating NAD(P)H dehydrogenase, quinone 1 (NQO1) to alleviate oxidative stress and induce macrophage polarization toward the M2 phenotype. CONCLUSION: E. bodinieri Vaniot ameliorated ALI thought regulating pyroptosis, inflammation, oxidative stress and macrophage polarization, as well as could be a promising source for therapeutic agent.


Subject(s)
Acute Lung Injury , Pyroptosis , Mice , Animals , China , Acute Lung Injury/drug therapy , Inflammation/drug therapy , Oxidative Stress , Macrophages , Lipopolysaccharides/pharmacology , Lung
SELECTION OF CITATIONS
SEARCH DETAIL
...