Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0293173, 2023.
Article in English | MEDLINE | ID: mdl-37983219

ABSTRACT

Soil quality is an important determinant of soil-use efficiency in the Loess Plateau. However, there is no in-depth study on the soil quality of the Loess Plateau. The present study compared the quality of the 0-20 cm soil layer (T0-20) and the 20-40 cm soil layer (T20-40) from the Guyuan region located in the Loess Plateau. The analysis revealed that T0-20 had a higher content of total N, total P, available P, and organic matter, and the activities of microbial enzymes, especially ß-grape-glycosidase (ß-GC) and sucrase (SC), than T20-40, indicating that soil quality in T0-20 was better than T20-40. Amplicon sequencing found that Pseudombrophila from Ascomycota was the most abundant microbial species and significantly differed between T0-20 (34.2%) and T20-40 (48.7%). This species and another 19 microbial species, such as Ceratobasidiaceae and Mortierellaceae, determined the diversity of soil microorganism. Further analysis of the phenotype and other parameters of pepper seedlings subjected to P. capsici infection isolated from test soil revealed that decreased organic matter content in deep soil layer is related to happening of pepper blight, and 3 h after infection was the critical time point for infection. The peroxidase (POD) activity increased after P. capsici infection and was positively correlated with infection time, suggesting this enzyme may be an indicator of pepper blight occurrence. These findings provide a theoretical foundation for planning pepper blight management and crop cultivation strategies in the Guyuan region.


Subject(s)
Ascomycota , Soil , Food , China , Carbon/analysis
2.
Food Nutr Res ; 642020.
Article in English | MEDLINE | ID: mdl-33447178

ABSTRACT

BACKGROUND: Carotenoids, the secondary metabolites terpenoids, are the largest factors that form the fruit color. Similar to flavonoids, they are not only safe and natural colorants of fruits but also play a role as stress response biomolecules. METHODS: To study the contribution of the key genes in carotenoids biosynthesis, fruit-color formation, and in response to cold stress, we characterized the key regulatory factor CaATHB-12 from the HD-ZIP I sub-gene family members in pepper. RESULTS: Cold stress enhanced carotenoid accumulation as compared with the normal condition. CaATHB-12 silencing through virus-induced gene silencing changed the fruit color by regulating the carotenoid contents. CaATHB-12 silencing increased the antioxidant enzyme activities in the fruits of pepper, exposed to cold stress, whereas CaATHB-12 overexpression decreased the activities of antioxidant enzymes in the transgenic Arabidopsis lines, exposed to cold stress, suggesting that CaATHB-12 is involved in the regulation of cold stress in the pepper fruits. CONCLUSION: Our research will provide insights into the formation of fruit color in pepper and contribution of CaATHB-12 in response to cold stress. Further study should be focused on the interaction between CaATHB-12 and its target gene.

3.
Plant Physiol Biochem ; 142: 151-162, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31284139

ABSTRACT

Extreme environmental conditions seriously affect crop growth and development, resulting in a decrease in crop yield and quality. However, small heat shock proteins (Hsp20s) play an important role in helping plants to avoid these negative impacts. In this study, we identified the expression pattern of the CaHsp25.9 gene in a thermo-tolerance pepper line R9 and thermo-sensitive line B6. The transcription of CaHsp25.9 was strongly induced by heat stress in both R9 and B6. The expression of CaHsp25.9 was induced by salt and drought stress in R9. Additionally, the CaHsp25.9 protein was localized in the cell membrane and cytoplasm. When silencing the CaHsp25.9 gene in the R9 line, the accumulation of malonaldehyde (MDA), relative electrolytic leakage, hydrogen peroxide, superoxide anion were increased, while total chlorophyll decreased under heat, salt, and drought stress. Over-expression of CaHsp25.9 in Arabidopsis resulted in decreased MDA, while proline, superoxide dismutase activity, germination, and root length increased under heat, salt, and drought stress. However, peroxidase activity was higher in drought stress but lower in heat and salt stress in transgenic Arabidopsis compared to the wild type (WT). Furthermore, the transcription of stress related genes was more highly induced in transgenic lines than WT. Our results indicated that CaHsp25.9 confers heat, salt, and drought stress tolerance to plants by reducing the accumulation of reactive oxygen species, enhancing the activity of antioxidant enzymes, and regulating the expression of stress-related genes. Therefore, these results may provide insight into plant adaption mechanisms developed in variable environments.


Subject(s)
Capsicum/physiology , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/physiology , Arabidopsis/genetics , Droughts , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Heat-Shock Response/physiology , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Salt Stress/physiology
4.
Protoplasma ; 256(1): 39-51, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29946904

ABSTRACT

Environmental stress affects growth and development of crops, and reduces yield and quality of crops. To cope with environmental stressors, plants have sophisticated defense mechanisms, including the HSF/HSP pathway. Here, we identify the expression pattern of CaHSP16.4 in thermo-tolerant and thermo-sensitive pepper (Capsicum annuum L.) lines. Under heat stress, R9 thermo-tolerant line had higher CaHSP16.4 expression level than the B6 thermo-sensitive line. Under drought stress, expression pattern of CaHSP16.4 was dynamic. Initially, CaHSP16.4 was downregulated then CaHSP16.4 significantly increased. Subcellular localization assay showed that CaHSP16.4 localizes in cytoplasm and nucleus. In the R9 line, silencing of CaHSP16.4 resulted in a significant increase in malonaldehyde content and a significant reduction in total chlorophyll content, suggesting that silencing of CaHSP16.4 reduces heat and drought stresses tolerance. Overexpression of CaHSP16.4 enhances tolerance to heat stress in Arabidopsis. Under heat stress, the survival rate of CaHSP16.4 overexpression lines was significantly higher than wild type. Furthermore, under heat, drought, and combined stress conditions, the CaHSP16.4-overexpression lines had lower relative electrolytic leakage and malonaldehyde content, higher total chlorophyll content, and higher activity levels of superoxide dismutase, catalase, ascorbic acid peroxidase, and glutathione peroxidase compared to wild type. Furthermore, the expression levels of the stress response genes in the overexpression lines were higher than the wild type. These results indicate that the overexpression of CaHSP16.4 enhances the ability of reactive oxygen species scavenging under heat and drought stress.


Subject(s)
Capsicum/chemistry , Heat-Shock Proteins, Small/metabolism , Plant Proteins/chemistry , Reactive Oxygen Species/metabolism , Droughts , Hot Temperature , Stress, Physiological
5.
Int J Mol Sci ; 19(8)2018 Jul 29.
Article in English | MEDLINE | ID: mdl-30060631

ABSTRACT

Chitin-binding proteins are pathogenesis-related gene family, which play a key role in the defense response of plants. However, thus far, little is known about the chitin-binding family genes in pepper (Capsicum annuum L.). In current study, 16 putative chitin genes (CaChi) were retrieved from the latest pepper genome database, and were classified into four distinct classes (I, III, IV and VI) based on their sequence structure and domain architectures. Furthermore, the structure of gene, genome location, gene duplication and phylogenetic relationship were examined to clarify a comprehensive background of the CaChi genes in pepper. The tissue-specific expression analysis of the CaChi showed the highest transcript levels in seed followed by stem, flower, leaf and root, whereas the lowest transcript levels were noted in red-fruit. Phytophthora capsici post inoculation, most of the CaChi (CaChiI3, CaChiIII1, CaChiIII2, CaChiIII4, CaChiIII6, CaChiIII7, CaChiIV1, CaChiVI1 and CaChiVI2) were induced by both strains (PC and HX-9). Under abiotic and exogenous hormonal treatments, the CaChiIII2, CaChiIII7, CaChiVI1 and CaChiVI2 were upregulated by abiotic stress, while CaChiI1, CaChiIII7, CaChiIV1 and CaChiIV2 responded to hormonal treatments. Furthermore, CaChiIV1-silenced plants display weakened defense by reducing (60%) root activity and increase susceptibility to NaCl stress. Gene ontology (GO) enrichment analysis revealed that CaChi genes primarily contribute in response to biotic, abiotic stresses and metabolic/catabolic process within the biological process category. These results exposed that CaChi genes are involved in defense response and signal transduction, suggesting their vital roles in growth regulation as well as response to stresses in pepper plant. In conclusion, these finding provide basic insights for functional validation of the CaChi genes in different biotic and abiotic stresses.


Subject(s)
Capsicum/genetics , Chitin/metabolism , Gene Expression Regulation, Plant , Phytophthora/physiology , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Proteins/genetics , Capsicum/physiology , Disease Resistance , Gene Ontology , Genome, Plant , Host-Parasite Interactions , Phylogeny , Plant Leaves , Plant Proteins/metabolism , Protein Binding , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...