Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(7): 12303-12317, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571057

ABSTRACT

Non-line-of-sight (NLOS) imaging retrieves the hidden scenes by utilizing the signals indirectly reflected by the relay wall. Benefiting from the picosecond-level timing accuracy, time-correlated single photon counting (TCSPC) based NLOS imaging can achieve theoretical spatial resolutions up to millimeter level. However, in practical applications, the total temporal resolution (also known as total time jitter, TTJ) of most current TCSPC systems exceeds hundreds of picoseconds due to the combined effects of multiple electronic devices, which restricts the underlying spatial resolution of NLOS imaging. In this paper, an instrument response function deconvolution (IRF-DC) method is proposed to overcome the constraints of a TCSPC system's TTJ on the spatial resolution of NLOS imaging. Specifically, we model the transient measurements as Poisson convolution process with the normalized IRF as convolution kernel, and solve the inverse problem with iterative deconvolution algorithm, which significantly improves the spatial resolution of NLOS imaging after reconstruction. Numerical simulations show that the IRF-DC facilitates light-cone transform and frequency-wavenumber migration solver to achieve successful reconstruction even when the system's TTJ reaches 1200 ps, which is equivalent to what was previously possible when TTJ was about 200 ps. In addition, the IRF-DC produces satisfactory reconstruction outcomes when the signal-to-noise ratio (SNR) is low. Furthermore, the effectiveness of the proposed method has also been experimentally verified. The proposed IRF-DC method is highly applicable and efficient, which may promote the development of high-resolution NLOS imaging.

2.
Appl Opt ; 61(28): 8475-8483, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36256163

ABSTRACT

Based on the time-independent rate equations and nonlinear Schrödinger equation, we simulate a 200 MHz all-polarization-maintaining (PM) mode-locked Yb-doped fiber laser. The cavity round trip evolution toward stable mode locking is present. Additionally, the gain coefficients along the gain fiber as well as the pulses, chirp, and spectra at different locations in the cavity are examined. The effects of chirped fiber Bragg grating parameters on the pulse shape and spectrum profile are also investigated. According to the calculations, we experimentally realize a 200 MHz femtosecond fiber laser with 115 mW output power. The timing jitter and integrated relative intensity noise are measured as 158 fs (1 kHz to 10 MHz) and 0.0513% (1 Hz to 300 kHz), respectively. Eventually, an amplified average power of 610 mW and 79 fs compressed pulses with a peak power of approximately 28 kW are obtained. The exhibited all-PM femtosecond fiber laser system can be adopted as the foundation for an optical frequency comb.

3.
Opt Express ; 29(7): 10939-10948, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33820216

ABSTRACT

We demonstrate a simple and ultra-sensitive refractive index (RI) sensor using a hollow-core silica tube (HCST) sandwiched between an up-taper and a down-taper in single mode fibers (SMF). According to our theoretical analysis, the interference spectrum comes from a combination of a three-beam multi-mode interference and anti-resonance effects. RI sensing will affect the mode interference. By demodulating the fringe contrast of the interference spectra, an ultrahigh sensitivity of -120.18 dB/RIU is achieved, implying a RI resolution of ∼ 8×10-6 in the RI range from 1.35 to 1.43. What's more, the sensor has great temperature insensitivity of -0.0085 dB/°C, indicating an extremely low cross sensitivity of 7×10-5 RIU/°C, which further benefits its practical application. The proposed configuration does not require special fiber or fabrication technique. In addition, the sensor's other merits such as simple and compact structure and ease offabrication offer the potential in biochemical sensing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...