Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Plant Sci ; 345: 112132, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788903

ABSTRACT

In this study, the whole HD-Zip family members of G. hirsutum were identified, and GhHDZ76 was classified into the HD-Zip IV subgroup. GhHDZ76 was predominantly expressed in the 0-5 DPA of fiber development stage and localized in the nucleus. Overexpression of GhHDZ76 significantly increased the length and density of trichomes in Arabidopsis thaliana. The fiber length of GhHDZ76 knockout lines by CRISPR/Cas9 was significantly shorter than WT at the early elongation and mature stage, indicating that GhHDZ76 positively regulate the fiber elongation. Scanning electron microscopy showed that the number of ovule surface protrusion of 0 DPA of GhHDZ76 knockout lines was significantly lower than WT, suggesting that GhHDZ76 can also promote the initiation of fiber development. The transcript level of GhWRKY16, GhRDL1, GhEXPA1 and GhMYB25 genes related to fiber initiation and elongation in GhHDZ76 knockout lines were significantly decreased. Yeast two-hybrid and Luciferase complementation imaging (LCI) assays showed that GhHDZ76 can interact with GhWRKY16 directly. As a transcription factor, GhHDZ76 has transcriptional activation activity, which could bind to L1-box elements of the promoters of GhRDL1 and GhEXPA1. Double luciferase reporter assay showed that the GhWRKY16 could enhance the transcriptional activity of GhHDZ76 to pGhRDL1, but it did not promote the transcriptional activity of GhHDZ76 to pGhEXPA1. GhHDZ76 protein may also promote the transcriptional activity of GhWRKY16 to the downstream target gene GhMYB25. Our results provided a new gene resource for fiber development and a theoretical basis for the genetic improvement of cotton fiber quality.


Subject(s)
Cotton Fiber , Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Transcription Factors , Gossypium/genetics , Gossypium/growth & development , Gossypium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , CRISPR-Cas Systems
2.
J Adv Res ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810909

ABSTRACT

INTRODUCTION: Transposon plays a vital role in cotton genome evolution, contributing to the expansion and divergence of genomes within the Gossypium genus. However, knowledge of transposon activity in modern cotton cultivation is limited. OBJECTIVES: In this study, we aimed to construct transposon-related variome within Gossypium genus and reveal role of transposon-related variations during cotton cultivation. In addition, we try to identify valuable transposon-related variations for cotton breeding. METHODS: We utilized graphical genome construction to build up the graphical transposon-related variome. Based on the graphical variome, we integrated t-test, eQTL analysis and Mendelian Randomization (MR) to identify valuable transposon activities and elite genes. In addition, a convolutional neural network (CNN) model was constructed to evaluate epigenomic effects of transposon-related variations. RESULTS: We identified 35,980 transposon activities among 10 cotton genomes, and the diversity of genomic and epigenomic features was observed among 21 transposon categories. The graphical cotton transposon-related variome was constructed, and 9,614 transposon-related variations with plasticity in the modern cotton cohort were used for eQTL, phenotypic t-test and Mendelian Randomization. 128 genes were identified as gene resources improving fiber length and strength simultaneously. 4 genes were selected from 128 genes to construct the elite gene panel whose utility has been validated in a natural cotton cohort and 2 accessions with phenotypic divergence. Based on the eQTL analysis results, we identified transposon-related variations involved in cotton's environmental adaption and human domestication, providing evidence of their role in cotton's adaption-domestication cooperation. CONCLUSIONS: The cotton transposon-related variome revealed the role of transposon-related variations in modern cotton cultivation, providing genomic resources for cotton molecular breeding.

3.
Genes (Basel) ; 15(3)2024 03 19.
Article in English | MEDLINE | ID: mdl-38540437

ABSTRACT

Genomic data in Gossypium provide numerous data resources for the cotton genomics community. However, to fill the gap between genomic analysis and breeding field work, detecting the featured genomic items of a subset cohort is essential for geneticists. We developed FPFinder v1.0 software to identify a subset of the cohort's fingerprint genomic sites. The FPFinder was developed based on the term frequency-inverse document frequency algorithm. With the short-read sequencing of an elite cotton pedigree, we identified 453 pedigree fingerprint genomic sites and found that these pedigree-featured sites had a role in cotton development. In addition, we applied FPFinder to evaluate the geographical bias of fiber-length-related genomic sites from a modern cotton cohort consisting of 410 accessions. Enriching elite sites in cultivars from the Yangtze River region resulted in the longer fiber length of Yangze River-sourced accessions. Apart from characterizing functional sites, we also identified 12,536 region-specific genomic sites. Combining the transcriptome data of multiple tissues and samples under various abiotic stresses, we found that several region-specific sites contributed to environmental adaptation. In this research, FPFinder revealed the role of the cotton pedigree fingerprint and region-specific sites in cotton development and environmental adaptation, respectively. The FPFinder can be applied broadly in other crops and contribute to genetic breeding in the future.


Subject(s)
Gossypium , Plant Breeding , Humans , Gossypium/genetics , Quantitative Trait Loci/genetics , Genomics , Genome, Plant
4.
Genome Biol ; 24(1): 282, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066616

ABSTRACT

BACKGROUND: Many elite genes have been identified from the available cotton genomic data, providing various genetic resources for gene-driven breeding. However, backbone cultivar-driven breeding is the most widely applied strategy. Revealing the genetic basis of cultivar-driven strategy's restriction is crucial for transition of cotton breeding strategy. RESULT: CRI12 is a backbone cultivar in cultivar-driven breeding. Here we sequence the pedigree of CRI12 using Nanopore long-read sequencing. We construct a graphical pedigree genome using the high-quality CRI12 genome and 13,138 structural variations within 20 different pedigree members. We find that low hereditary stability of elite segments in backbone cultivars is a drawback of cultivar-driven strategy. We also identify 623 functional segments in CRI12 for multiple agronomic traits in presence and absence variation-based genome-wide association study on three cohorts. We demonstrate that 25 deleterious segments are responsible for the geographical divergence of cotton in pathogen resistance. We also characterize an elite pathogen-resistant gene (GhKHCP) utilized in modern cotton breeding. In addition, we identify 386 pedigree fingerprint segments by comparing the segments of the CRI12 pedigree with those of a large cotton population. CONCLUSION: We characterize the genetic patterns of functional segments in the pedigree of CRI12 using graphical genome method, revealing restrictions of cultivar-driven strategies in cotton breeding. These findings provide theoretical support for transitioning from cultivar-driven to gene-driven strategy in cotton breeding.


Subject(s)
Genome, Plant , Genome-Wide Association Study , Plant Breeding/methods , Phenotype , Genomics , Gossypium/genetics
5.
BMC Genomics ; 24(1): 474, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608304

ABSTRACT

BACKGROUND: The glyoxalase system includes glyoxalase I (GLXI), glyoxalase II (GLXII) and glyoxalase III (GLXIII), which are responsible for methylglyoxal (MG) detoxification and involved in abiotic stress responses such as drought, salinity and heavy metal. RESULTS: In this study, a total of 620 GLX family genes were identified from 21 different plant species. The results of evolutionary analysis showed that GLX genes exist in all species from lower plants to higher plants, inferring that GLX genes might be important for plants, and GLXI and GLXII account for the majority. In addition, motif showed an expanding trend in the process of evolution. The analysis of cis-acting elements in 21 different plant species showed that the promoter region of the GLX genes were rich in phytohormones and biotic and abiotic stress-related elements, indicating that GLX genes can participate in a variety of life processes. In cotton, GLXs could be divided into two groups and most GLXIs distributed in group I, GLXIIs and GLXIIIs mainly belonged to group II, indicating that there are more similarities between GLXII and GLXIII in cotton evolution. The transcriptome data analysis and quantitative real-time PCR analysis (qRT-PCR) show that some members of GLX family would respond to high temperature treatment in G.hirsutum. The protein interaction network of GLXs in G.hirsutum implied that most members can participate in various life processes through protein interactions. CONCLUSIONS: The results elucidated the evolutionary history of GLX family genes in plants and lay the foundation for their functions analysis in cotton.


Subject(s)
Gossypium , Gossypium/enzymology , Gossypium/genetics , Evolution, Molecular , Phylogeny , Promoter Regions, Genetic , Protein Interaction Maps
6.
Genes (Basel) ; 14(6)2023 05 24.
Article in English | MEDLINE | ID: mdl-37372323

ABSTRACT

Tetraploid cultivated cotton (Gossypium spp.) produces cottonseeds rich in protein and oil. Gossypol and related terpenoids, stored in the pigment glands of cottonseeds, are toxic to human beings and monogastric animals. However, a comprehensive understanding of the genetic basis of gossypol and gland formation is still lacking. We performed a comprehensive transcriptome analysis of four glanded versus two glandless tetraploid cultivars distributed in Gossypium hirsutum and Gossypium barbadense. A weighted gene co-expression network analysis (WGCNA) based on 431 common differentially expressed genes (DEGs) uncovered a candidate module that was strongly associated with the reduction in or disappearance of gossypol and pigment glands. Further, the co-expression network helped us to focus on 29 hub genes, which played key roles in the regulation of related genes in the candidate module. The present study contributes to our understanding of the genetic basis of gossypol and gland formation and serves as a rich potential source for breeding cotton cultivars with gossypol-rich plants and gossypol-free cottonseed, which is beneficial for improving food safety, environmental protection, and economic gains of tetraploid cultivated cotton.


Subject(s)
Gossypol , Animals , Humans , Gossypol/metabolism , Gossypium/genetics , Gossypium/metabolism , Cottonseed Oil/metabolism , Tetraploidy , Plant Breeding , Gene Expression Profiling
7.
PeerJ ; 11: e15152, 2023.
Article in English | MEDLINE | ID: mdl-37009157

ABSTRACT

Background: Nitrate is the primary type of nitrogen available to plants, which is absorbed and transported by nitrate transporter 2 (NRT2) at low nitrate conditions. Methods: Genome-wide identification of NRT2 genes in G. hirsutum was performed. Gene expression patterns were revealed using RNA-seq and qRT-PCR. Gene functions were characterized using overexpression in A. thaliana and silencing in G. hirsutum. Protein interactions were verified by yeast two-hybrid and luciferase complementation imaging (LCI) assays. Results: We identified 14, 14, seven, and seven NRT2 proteins in G. hirsutum, G. barbadense, G. raimondii, and G. arboreum. Most NRT2 proteins were predicted in the plasma membrane. The NRT2 genes were classified into four distinct groups through evolutionary relationships, with members of the same group similar in conserved motifs and gene structure. The promoter regions of NRT2 genes included many elements related to growth regulation, phytohormones, and abiotic stresses. Tissue expression pattern results revealed that most GhNRT2 genes were specifically expressed in roots. Under low nitrate conditions, GhNRT2 genes exhibited different expression levels, with GhNRT2.1e being the most up-regulated. Arabidopsis plants overexpressing GhNRT2.1e exhibited increased biomass, nitrogen and nitrate accumulation, nitrogen uptake and utilization efficiency, nitrogen-metabolizing enzyme activity, and amino acid content under low nitrate conditions. In addition, GhNRT2.1e-silenced plants exhibited suppressed nitrate uptake and accumulation, hampered plant growth, affected nitrogen metabolism processes, and reduced tolerance to low nitrate. The results showed that GhNRT2.1e could promote nitrate uptake and transport under low nitrate conditions, thus effectively increasing nitrogen use efficiency (NUE). We found that GhNRT2.1e interacts with GhNAR2.1 by yeast two-hybrid and LCI assays. Discussion: Our research lays the foundation to increase NUE and cultivate new cotton varieties with efficient nitrogen use.


Subject(s)
Arabidopsis , Gossypium , Gossypium/genetics , Plant Proteins/genetics , Nitrates/metabolism , Nitrogen/metabolism , Saccharomyces cerevisiae/metabolism , Arabidopsis/genetics , Nitrate Transporters
8.
Mol Genet Genomics ; 298(3): 755-766, 2023 May.
Article in English | MEDLINE | ID: mdl-37027022

ABSTRACT

Myeloblastosis (MYB) transcription factors (TFs) form a large gene family involved in a variety of biological processes in plants. Little is known about their roles in the development of cotton pigment glands. In this study, 646 MYB members were identified in Gossypium hirsutum genome and phylogenetic classification was analyzed. Evolution analysis revealed assymetric evolution of GhMYBs during polyploidization and sequence divergence of MYBs in G. hirustum was preferentially happend in D sub-genome. WGCNA (weighted gene co-expression network analysis) showed that four modules had potential relationship with gland development or gossypol biosynthesis in cotton. Eight differentially expressed GhMYB genes were identified by screening transcriptome data of three pairs of glanded and glandless cotton lines. Of these, four were selected as candidate genes for cotton pigment gland formation or gossypol biosynthesis by qRT-PCR assay. Silencing of GH_A11G1361 (GhMYB4) downregulated expression of multiple genes in gossypol biosynthesis pathway, indicating it could be involved in gossypol biosynthesis. The potential protein interaction network suggests that several MYBs may have indirect interaction with GhMYC2-like, a key regulator of pigment gland formation. Our study was the systematic analysis of MYB genes in cotton pigment gland development, providing candidate genes for further study on the roles of cotton MYB genes in pigment gland formation, gossypol biosynthesis and future crop plant improvement.


Subject(s)
Gossypium , Gossypol , Gossypium/metabolism , Gossypol/metabolism , Phylogeny , Genes, myb/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant
9.
Genes (Basel) ; 14(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36980883

ABSTRACT

Phytocyanins (PCs) are a class of plant-specific blue copper proteins that have been demonstrated to play a role in electron transport and plant development. Through analysis of the copper ligand residues, spectroscopic properties, and domain architecture of the protein, PCs have been grouped into four subfamilies: uclacyanins (UCs), stellacyanins (SCs), plantacyanins (PLCs), and early nodulin-like proteins (ENODLs). The present study aimed to identify and characterise the PCs present in three distinct cotton species (Gossypium hirsutum, Gossyium arboreum, and Gossypium raimondii) through the identification of 98, 63, and 69 genes respectively. We grouped PCs into four clades by using bioinformatics analysis and sequence alignment, which exhibit variations in gene structure and motif distribution. PCs are distributed across all chromosomes in each of the three species, with varying numbers of exons per gene and multiple conserved motifs, and with a minimum of 1 and maximum of 11 exons found on one gene. Transcriptomic data and qRT-PCR analysis revealed that two highly differentiated PC genes were expressed at the fibre initiation stage, while three highly differentiated PCs were expressed at the fibre elongation stage. These findings serve as a foundation for further investigations aimed at understanding the contribution of this gene family in cotton fibre production.


Subject(s)
Copper , Gossypium , Copper/metabolism , Genome, Plant , Cotton Fiber , Sequence Alignment
10.
Plant Physiol Biochem ; 194: 281-301, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442360

ABSTRACT

The heavy metal-binding domain is involved in heavy metal transporting and plays a significant role in plant detoxification. However, the functions of HMAs are less well known in cotton. In this study, a total of 143 GhHMAs (heavy metal-binding domain) were detected by genome-wide identification in G. hirsutum L. All the GhHMAs were classified into four groups via phylogenetic analysis. The exon/intron structure and protein motifs indicated that each branch of the GhHMA genes was highly conserved. 212 paralogous GhHMA gene pairs were identified, and the segmental duplications were the main role to the expansion of GhHMAs. The Ka/Ks values suggested that the GhHMA gene family has undergone purifying selection during the long-term evolutionary process. GhHMA3 and GhHMA75 were located in the plasma membrane, while GhHMA26, GhHMA117 and GhHMA121 were located in the nucleus, respectively. Transcriptomic data and qRT-PCR showed that GhHMA26 exhibited different expression patterns in each tissue and during fiber development or under different abiotic stresses. Overexpressing GhHMA26 significantly promoted the elongation of leaf trichomes and also improved the tolerance to salt stress. Therefore, GhHMA26 may positively regulate fiber elongation and abiotic stress. Yeast two-hybrid assays indicated that GhHMA26 and GhHMA75 participated in multiple biological functions. Our results suggest some genes in the GhHMAs might be associated with fiber development and the abiotic stress response, which could promote further research involving functional analysis of GhHMA genes in cotton.


Subject(s)
Metals, Heavy , Stress, Physiological , Phylogeny , Stress, Physiological/genetics , Introns , Exons , Metals, Heavy/metabolism , Gossypium/genetics , Gossypium/metabolism , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant/genetics , Cotton Fiber
11.
BMC Bioinformatics ; 23(1): 91, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35291940

ABSTRACT

BACKGROUND: Upland cotton provides the most natural fiber in the world. During fiber development, the quality and yield of fiber were influenced by gene transcription. Revealing sequence features related to transcription has a profound impact on cotton molecular breeding. We applied convolutional neural networks to predict gene expression status based on the sequences of gene transcription start regions. After that, a gradient-based interpretation and an N-adjusted kernel transformation were implemented to extract sequence features contributing to transcription. RESULTS: Our models had approximate 80% accuracies, and the area under the receiver operating characteristic curve reached over 0.85. Gradient-based interpretation revealed 5' untranslated region contributed to gene transcription. Furthermore, 6 DOF binding motifs and 4 transcription activator binding motifs were obtained by N-adjusted kernel-motif transformation from models in three developmental stages. Apart from 10 general motifs, 3 DOF5.1 genes were also detected. In silico analysis about these motifs' binding proteins implied their potential functions in fiber formation. Besides, we also found some novel motifs in plants as important sequence features for transcription. CONCLUSIONS: In conclusion, the N-adjusted kernel transformation method could interpret convolutional neural networks and reveal important sequence features related to transcription during fiber development. Potential functions of motifs interpreted from convolutional neural networks could be validated by further wet-lab experiments and applied in cotton molecular breeding.


Subject(s)
Neural Networks, Computer
12.
Genes (Basel) ; 13(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-35205337

ABSTRACT

The cellulose synthase genes control the biosynthesis of cellulose in plants. Nonetheless, the gene family members of CesA have not been identified in the newly assembled genome of Gossypiumhirsutum (AD1, HEBAU_NDM8). We identified 38 CesA genes in G. hirsutum (NDM8) and found that the protein sequence of GhMCesA35 is 100% identical to CelA1 in a previous study. It is already known that CelA1 is involved in cellulose biosynthesis in vitro. However, the function of this gene in vivo has not been validated. In this study, we verified the function of GhMCesA35 in vivo based on overexpressed Arabidopsis thaliana. In addition, we found that it interacted with GhCesA7 through the yeast two-hybrid assay. This study provides new insights for studying the biological functions of CesA genes in G. hirsutum, thereby improving cotton fiber quality and yield.


Subject(s)
Arabidopsis , Gossypium , Arabidopsis/genetics , Cellulose , Cotton Fiber , Gossypium/genetics , Phylogeny
13.
Planta ; 255(1): 23, 2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34923605

ABSTRACT

MAIN CONCLUSION: GL2-interacting-repressor (GIR) family members may contribute to fiber/fuzz formation via a newly discovered unique pathway in Gossypium arboreum. There are similarities between cotton fiber development and the formation of trichomes and root hairs. The GL2-interacting-repressors (GIRs) are crucial regulators of root hair and trichome formation. The GaFzl gene, annotated as GaGIR1, is negatively associated with trichome development and fuzz initiation. However, there is relatively little available information regarding the other GIR genes in cotton, especially regarding their effects on cotton fiber development. In this study, 21 GIR family genes were identified in the diploid cotton species Gossypium arboreum; these genes were divided into three groups. The GIR genes were characterized in terms of their phylogenetic relationships, structures, chromosomal distribution and evolutionary dynamics. These GIR genes were revealed to be unequally distributed on 12 chromosomes in the diploid cotton genome, with no GIR gene detected on Ga06. The cis-acting elements in the promoter regions were predicted to be responsive to light, phytohormones, defense activities and stress. The transcriptomic data and qRT-PCR results revealed that most GIR genes were not differentially expressed between the wild-type control and the fuzzless mutant line. Moreover, 14 of 21 family genes were expressed at high levels, indicating these genes may play important roles during fiber development and fuzz formation. Furthermore, Ga01G0231 was predominantly expressed in root samples, suggestive of a role in root hair formation rather than in fuzz initiation and development. The results of this study have enhanced our understanding of the GIR genes and their potential utility for improving cotton fiber through breeding.


Subject(s)
Cotton Fiber , Phylogeny
14.
Plants (Basel) ; 10(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34961226

ABSTRACT

Caffeic acid O-methyltransferases (COMTs) play an essential role in lignin synthesis procession, especially in the plant's phenylalanine metabolic pathway. The content of COMT genes in cotton and the relationship between their expression patterns have not been studied clearly in cotton. In this study, we have identified 190 COMT genes in cotton, which were classified into three groups (I, II and III), and mapped on the cotton chromosomes. In addition, we found that 135 of the 190 COMT genes result from dispersed duplication (DSD) and whole-genome duplication (WGD), indicating that DSD and WGD were the main forces driving COMT gene expansion. The Ka/Ks analysis showed that GhCOMT43 and GhCOMT41 evolved from GaCOMT27 and GrCOMT14 through positive selection. The results of qRT-PCR showed that GhCOMT13, GhCOMT28, GhCOMT39 and GhCOMT55 were related to lignin content during the cotton fiber development. GhCOMT28, GhCOMT39, GhCOMT55, GhCOMT56 and GhCOMT57 responded to Verticillium Wilt (VW) and maybe related to VW resistance through lignin synthesis. Conclusively, this study found that GhCOMTs were highly expressed in the secondary wall thickening stage and VW. These results provide a clue for studying the functions of GhCOMTs in the development of cotton fiber and VW resistance and could lay a foundation for breeding cotton cultivates with higher quantity and high resistance to VW.

15.
Plants (Basel) ; 10(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34834823

ABSTRACT

Amino acid transporters (AATs) are a kind of membrane proteins that mediate the transport of amino acids across cell membranes in higher plants. The AAT proteins are involved in regulating plant cell growth and various developmental processes. However, the biological function of this gene family in cotton fiber development is not clear. In this study, 190, 190, 101, and 94 full-length AAT genes were identified from Gossypiumhirsutum, G. barbadense, G. arboreum, and G. raimondii. A total of 575 AAT genes from the four cotton species were divided into two subfamilies and 12 clades based on phylogenetic analysis. The AAT genes in the four cotton species were distributed on all the chromosomes. All GhAAT genes contain multiple exons, and each GhAAT protein has multiple conserved motifs. Transcriptional profiling and RT qPCR analysis showed that four GhATT genes tend to express specifically at the fiber initiation stage. Eight genes tend to express specifically at the fiber elongation and maturity stage, and four genes tend to express specifically at the fiber initiation and elongation stages. Our results provide a solid basis for further elucidating the biological function of AAT genes related to cotton fiber development and offer valuable genetic resources for crop improvement in the future.

16.
Plants (Basel) ; 10(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204463

ABSTRACT

WRKY transcription factors had multiple functions in plant secondary metabolism, leaf senescence, fruit ripening, adaptation to biotic and abiotic stress, and plant growth and development. However, knowledge of the group III WRKY subfamily in fiber development in upland cotton (Gossypium hirsutum L.) is largely absent. Previous studies have shown that there were 21 putative group III WRKY members in G. hirsutum L. These putative amino acid sequences from the III WRKY group were phylogenetically clustered into three clades. Multiple alignment, conservative motif analysis, and gene structure analysis showed that the members clustered together in the phylogenetic tree had similar motifs and gene structures. Expression pattern analysis revealed that variation in the expression levels of these genes in different tissues and fiber development stages. To better understand the functions of putative group III WRKY genes in G. hirsutum L., we selected the cotton fiber initiation-related gene GhWRKY53 for cloning and functional identification. The subcellular localization experiment of GhWRKY53 in Nicotiana tabacum leaves showed that it was located in the nucleus. The heterologous expression of GhWRKY53 in Arabidopsis thaliana could significantly increase the density of trichomes. Twelve proteins that interacted with GhWRKY53 were screened from the cotton fiber cDNA library by yeast two-hybrid experiment. This study findings lay a foundation for further research on the role of the GhWRKY53 during cotton fiber development and provide a new insight for further studying putative group III WRKY genes in G. hirsutum L. Our research results also provide vital information for the genetic mechanism of high-quality cotton fiber formation and essential genetic resources for cotton fiber quality improvement.

17.
Int J Mol Sci ; 22(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066899

ABSTRACT

Plant NAC (NAM, ATAF1/2, and CUC2) family is involved in various development processes including Programmed Cell Death (PCD) associated development. However, the relationship between NAC family and PCD-associated cotton pigment gland development is largely unknown. In this study, we identified 150, 153 and 299 NAC genes in newly updated genome sequences of G. arboreum, G. raimondii and G. hirsutum, respectively. All NAC genes were divided into 8 groups by the phylogenetic analysis and most of them were conserved during cotton evolution. Using the vital regulator of gland formation GhMYC2-like as bait, expression correlation analysis screened out 6 NAC genes which were low-expressed in glandless cotton and high-expressed in glanded cotton. These 6 NAC genes acted downstream of GhMYC2-like and were induced by MeJA. Silencing CGF1(Cotton Gland Formation1), another MYC-coding gene, caused almost glandless phenotype and down-regulated expression of GhMYC2-like and the 6 NAC genes, indicating a MYC-NAC regulatory network in gland development. In addition, predicted regulatory mechanism showed that the 6 NAC genes were possibly regulated by light, various phytohormones and transcription factors as well as miRNAs. The interaction network and DNA binding sites of the 6 NAC transcription factors were also predicted. These results laid the foundation for further study of gland-related genes and gland development regulatory network.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , Gossypium/anatomy & histology , Gossypium/genetics , Pigmentation/genetics , Plant Proteins/genetics , Chromosomes, Plant/genetics , Diploidy , Gene Duplication , Gene Expression Profiling , Gene Silencing , Genes, Plant , Models, Biological , Multigene Family , Phylogeny , Plant Proteins/metabolism , Stress, Physiological/genetics , Synteny/genetics
18.
Genes (Basel) ; 12(5)2021 05 17.
Article in English | MEDLINE | ID: mdl-34067654

ABSTRACT

Fuzzless mutants are ideal materials to decipher the regulatory network and mechanism underlying fuzz initiation and formation. In this study, we utilized two Gossypium arboreum accessions differing in fuzz characteristics to explore expression pattern differences and discriminate genes involved in fuzz development using RNA sequencing. Gene ontology (GO) analysis was conducted and found that DEGs were mainly enriched in the regulation of transcription, metabolic processes and oxidation-reduction-related processes. Weighted gene co-expression network analysis discerned the MEmagenta module highly associated with a fuzz/fuzzless trait, which included a total of 50 hub genes differentially expressed between two materials. GaFZ, which negatively regulates trichome and fuzz formation, was found involved in MEmagenta cluster1. In addition, twenty-eight hub genes in MEmagenta cluster1 were significantly up-regulated and expressed in fuzzless mutant DPL972. It is noteworthy that Ga04G1219 and Ga04G1240, which, respectively, encode Fasciclin-like arabinogalactan protein 18(FLA18) and transport protein, showed remarkable differences of expression level and implied that they may be involved in protein glycosylation to regulate fuzz formation and development. This module and hub genes identified in this study will provide new insights on fiber and fuzz formation and be useful for the molecular design breeding of cotton genetic improvement.


Subject(s)
Gossypium/genetics , Transcriptome , Trichomes/genetics , Genes, Plant , Gossypium/growth & development , Mutation , Plant Breeding , Trichomes/growth & development
19.
BMC Plant Biol ; 21(1): 102, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602142

ABSTRACT

BACKGROUND: Gossypium hirsutum L. (cotton) is one of the most economically important crops in the world due to its significant source of fiber, feed, foodstuff, oil and biofuel products. However, the utilization of cottonseed was limited due to the presence of small and darkly pigmented glands that contain large amounts of gossypol, which is toxic to human beings and non-ruminant animals. To date, some progress has been made in the pigment gland formation, but the underlying molecular mechanism of its formation was still unclear. RESULTS: In this study, we identified an AP2/ERF transcription factor named GhERF105 (GH_A12G2166), which was involved in the regulation of gland pigmentation by the comparative transcriptome analysis of the leaf of glanded and glandless plants. It encoded an ERF protein containing a converved AP2 domain which was localized in the nucleus with transcriptional activity, and showed the high expression in glanded cotton accessions that contained much gossypol. Virus-induced gene silencing (VIGS) against GhERF105 caused the dramatic reduction in the number of glands and significantly lowered levels of gossypol in cotton leaves. GhERF105 showed the patterns of spatiotemporal and inducible expression in the glanded plants. CONCLUSIONS: These results suggest that GhERF105 contributes to the pigment gland formation and gossypol biosynthesis in partial organs of glanded plant. It also provides a potential molecular basis to generate 'glandless-seed' and 'glanded-plant' cotton cultivar.


Subject(s)
Gossypium/growth & development , Gossypium/genetics , Plant Proteins/genetics , Transcription Factors/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Gossypium/chemistry , Gossypium/metabolism , Gossypol/analysis , Gossypol/metabolism , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Domains , Transcription Factors/chemistry , Transcription Factors/genetics
20.
BMC Genomics ; 21(1): 470, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32640982

ABSTRACT

BACKGROUND: Genome sequencing technologies have been improved at an exponential pace but precise chromosome-scale genome assembly still remains a great challenge. The draft genome of cultivated G. arboreum was sequenced and assembled with shotgun sequencing approach, however, it contains several misassemblies. To address this issue, we generated an improved reassembly of G. arboreum chromosome 12 using genetic mapping and reference-assisted approaches and evaluated this reconstruction by comparing with homologous chromosomes of G. raimondii and G. hirsutum. RESULTS: In this study, we generated a high quality assembly of the 94.64 Mb length of G. arboreum chromosome 12 (A_A12) which comprised of 144 scaffolds and contained 3361 protein coding genes. Evaluation of results using syntenic and collinear analysis of reconstructed G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii (D_D08) and G. hirsutum (AD_A12 and AD_D12) confirmed the significant improved quality of current reassembly as compared to previous one. We found major misassemblies in previously assembled chromosome 12 (A_Ca9) of G. arboreum particularly in anchoring and orienting of scaffolds into a pseudo-chromosome. Further, homologous chromosomes 12 of G. raimondii (D_D08) and G. arboreum (A_A12) contained almost equal number of transcription factor (TF) related genes, and showed good collinear relationship with each other. As well, a higher rate of gene loss was found in corresponding homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton, signifying that gene loss is likely a continuing process in chromosomal evolution of tetraploid cotton. CONCLUSION: This study offers a more accurate strategy to correct misassemblies in sequenced draft genomes of cotton which will provide further insights towards its genome organization.


Subject(s)
Chromosomes, Plant , Gossypium/genetics , Chromosome Mapping , Evolution, Molecular , Genes, Plant , Synteny , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...