Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(22): 12445-12458, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771652

ABSTRACT

Global water deficit is a severe abiotic stress threatening the yielding and quality of crops. Abscisic acid (ABA) is a phytohormone that mediates drought tolerance. Protein kinases and phosphatases function as molecular switches in eukaryotes. Protein phosphatases type 2C (PP2Cs) are a major family that play essential roles in ABA signaling and stress responses. However, the role and underlying mechanism of PP2C in rapeseed (Brassica napus L.) mediating drought response has not been reported yet. Here, we characterized a PP2C family member, BnaPP2C37, and its expression level was highly induced by ABA and dehydration treatments. It negatively regulates drought tolerance in rapeseed. We further identified that BnaPP2C37 interacted with multiple PYR/PYL receptors and a drought regulator BnaCPK5 (calcium-dependent protein kinase 5) through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Specifically, BnaPYL1 and BnaPYL9 repress BnaPP2C37 phosphatase activity. Moreover, the pull-down assay and phosphatase assays show BnaPP2C37 interacts with BnaCPK5 to dephosphorylate BnaCPK5 and its downstream BnaABF3. Furthermore, a dual-luciferase assay revealed BnaPP2C37 transcript level was enhanced by BnaABF3 and BnaABF4, forming a negative feedback regulation to ABA response. In summary, we identified that BnaPP2C37 functions negatively in drought tolerance of rapeseed, and its phosphatase activity is repressed by BnaPYL1/9 whereas its transcriptional level is upregulated by BnaABF3/4.


Subject(s)
Abscisic Acid , Brassica napus , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Abscisic Acid/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Brassica napus/genetics , Brassica napus/metabolism , Protein Phosphatase 2C/metabolism , Protein Phosphatase 2C/genetics , Stress, Physiological , Plant Growth Regulators/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Drought Resistance
2.
Plant Sci ; 315: 111125, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35067297

ABSTRACT

Drought is an environmental stress that causes severe crop loss. Drought stress can induce abscisic acid (ABA) accumulation and cytoplasmic calcium oscillation. Calcium-dependent protein kinases (CPKs) constitute a group of Ser/Thr protein kinases decoding calcium signals. However, the function and molecular mechanisms of most CPKs in oilseed rape (Brassica napus) remain unknown. Here, we report the functional characterization of BnaCPK5 in drought stress tolerance. BnaCPK5 belongs to Group I of the CPK family and was localized at the plasma membrane and nuclei. Overexpression of BnaCPK5 enhanced drought stress tolerance compared with the control. A screening of interacting proteins identified that BnaCPK5 interacted strongly with two ABA-Responsive Element Binding Factors (ABF/AREBs), BnaABF3 and BnaABF4. BnaCPK5 was shown to phosphorylate both BnaABF3 and BnaABF4 in a kinase assay. Further, it was found that the phosphorylation of BnaABF3 and BnaABF4 by BnaCPK5 increased their transcriptional activities against the famous drought stress marker gene, Responsive to Dehydration (RD) 29B and protein stability. Taken together, these data demonstrate that BnaCPK5 acts as a positive regulator of drought tolerance by, at least in part, phosphorylating two core ABA-signaling components to modulate Late-Embryogenesis Abundant (LEA)-like RD29B expression.


Subject(s)
Abscisic Acid/metabolism , Adaptation, Physiological/genetics , Brassica napus/genetics , Brassica napus/metabolism , Calcium/metabolism , Droughts , Protein Kinases/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , G-Box Binding Factors , Gene Expression Regulation, Plant , Genes, Plant , Phosphorylation/genetics , Phosphorylation/physiology , Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...