Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 12(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299053

ABSTRACT

Timely and accurate detection of plant diseases is a crucial research topic. A dynamic-pruning-based method for automatic detection of plant diseases in low-computing situations is proposed. The main contributions of this research work include the following: (1) the collection of datasets for four crops with a total of 12 diseases over a three-year history; (2) the proposition of a re-parameterization method to improve the boosting accuracy of convolutional neural networks; (3) the introduction of a dynamic pruning gate to dynamically control the network structure, enabling operation on hardware platforms with widely varying computational power; (4) the implementation of the theoretical model based on this paper and the development of the associated application. Experimental results demonstrate that the model can run on various computing platforms, including high-performance GPU platforms and low-power mobile terminal platforms, with an inference speed of 58 FPS, outperforming other mainstream models. In terms of model accuracy, subclasses with a low detection accuracy are enhanced through data augmentation and validated by ablation experiments. The model ultimately achieves an accuracy of 0.94.

2.
Plants (Basel) ; 12(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36904051

ABSTRACT

Protecting wheat yield is a top priority in agricultural production, and one of the important measures to preserve yield is the control of wheat diseases. With the maturity of computer vision technology, more possibilities have been provided to achieve plant disease detection. In this study, we propose the position attention block, which can effectively extract the position information from the feature map and construct the attention map to improve the feature extraction ability of the model for the region of interest. For training, we use transfer learning to improve the training speed of the model. In the experiment, ResNet built on positional attention blocks achieves 96.4% accuracy, which is much higher compared to other comparable models. Afterward, we optimized the undesirable detection class and validated its generalization performance on an open-source dataset.

SELECTION OF CITATIONS
SEARCH DETAIL