Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Colloid Interface Sci ; 650(Pt B): 1949-1957, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37517194

ABSTRACT

The oxygen evolution reaction (OER) is a key process in various energy storage/generation technologies. Tuning the electronic structures of catalysts is an effective approach to improve the catalyst's activity. In this work, we synthesized Ce-doped cobalt-organic frameworks with benzene-1, 4-dicarboxylic acid (BDC) as the ligand as efficient OER electrocatalysts (denoted as Co3Ce1 BDC) with excellent stability and improved catalytic performance. The introduced Ce in Co3Ce1 BDC changes the surface configuration and tunes electronic structures of the active Co site, leading to enhanced interaction between intermediates and catalysts. Besides, the specific surface area, reaction kinetics, charge transfer efficiency, and turnover frequency are also improved in the presence of Ce. As a result, the Co3Ce1 BDC demonstrated excellent performance with a low overpotential of 285 mV at a current of 10 mA·cm-2, a preferable Tafel slope of 56.1 mV·dec-1, and an excellent durability in 1 M KOH, indicating the potential for practical applications in water splitting and other energy storage technologies wherein the OER plays a critical role. Comprehensive theoretical calculations and modeling further identified the key role of Ce in modulating the electronic structure and OER activity of cobalt-organic frameworks. Most importantly, this work provides a new strategy to the development of efficient cobalt-organic framework catalysts in OER-related applications.

2.
New Phytol ; 229(1): 370-387, 2021 01.
Article in English | MEDLINE | ID: mdl-33411361

ABSTRACT

Nonphotochemical quenching (NPQ), an intricate photoprotective process, plays fundamental roles in maintaining plant fitness. The PsbS protein is essential for the rapid induction of NPQ, and acts in a dose-dependent manner in leaves. However, little information is known on the transcriptional control of PsbS in land plants. Here we demonstrated that the expression of OsPsbS1 is directly upregulated by OsbZIP72 while repressed by OsMYBS2 in rice. We identified a new cis-element GACAGGTG in japonica OsPsbS1 promoter, to which OsbZIP72 could strongly bind and activate the expression of OsPsbS1. The new cis-element CTAATC confers specific binding for OsMYBS2 in japonica OsPsbS1 promoter. OsbZIP72 can be activated by SAPK1, and acts depending on the abscisic acid (ABA) signalling pathway. GF14A protein affects the repression activity of OsMYBS2 by regulating its nucleocytoplasmic shuttling, and Ser53 is necessary for OsMYBS2 to be retained in the cytoplasm. The inducibility of OsPsbS1 transcription under high light conditions in OsbZIP72 knockout lines was greatly impaired, while the repression of OsPsbS1 transcription under a low light environment in OsMYBS2 knockout lines was significantly alleviated. These results reveal cross-talk among NPQ processes, the ABA signalling pathway and abiotic stress signalling. The elaborate mechanisms may help enhance photoprotection and improve photosynthesis in rice.


Subject(s)
Oryza , Abscisic Acid , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...