Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Health ; 21(1): 26, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35180862

ABSTRACT

BACKGROUND: Polycystic ovary morphology (PCOM) is an ultrasonographic finding that can be present in women with ovulatory disorder and oligomenorrhea due to hypothalamic, pituitary, and ovarian dysfunction. While air pollution has emerged as a possible disrupter of hormone homeostasis, limited research has been conducted on the association between air pollution and PCOM. METHODS: We conducted a longitudinal cohort study using electronic medical records data of 5,492 women with normal ovaries at the first ultrasound that underwent a repeated pelvic ultrasound examination during the study period (2004-2016) at Boston Medical Center. Machine learning text algorithms classified PCOM by ultrasound. We used geocoded home address to determine the ambient annual average PM2.5 exposures and categorized into tertiles of exposure. We used Cox Proportional Hazards models on complete data (n = 3,994), adjusting for covariates, and additionally stratified by race/ethnicity and body mass index (BMI). RESULTS: Cumulative exposure to PM2.5 during the study ranged from 4.9 to 17.5 µg/m3 (mean = 10.0 µg/m3). On average, women were 31 years old and 58% were Black/African American. Hazard ratios and 95% confidence intervals (CI) comparing the second and third PM2.5 exposure tertile vs. the reference tertile were 1.12 (0.88, 1.43) and 0.89 (0.62, 1.28), respectively. No appreciable differences were observed across race/ethnicity. Among women with BMI ≥ 30 kg/m2, we observed weak inverse associations with PCOM for the second (HR: 0.93, 95% CI: 0.66, 1.33) and third tertiles (HR: 0.89, 95% CI: 0.50, 1.57). CONCLUSIONS: In this study of reproductive-aged women, we observed little association between PM2.5 concentrations and PCOM incidence. No dose response relationships were observed nor were estimates appreciably different across race/ethnicity within this clinically sourced cohort.


Subject(s)
Air Pollutants , Air Pollution , Polycystic Ovary Syndrome , Adult , Air Pollutants/toxicity , Air Pollution/statistics & numerical data , Cohort Studies , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Female , Humans , Longitudinal Studies , Male , Particulate Matter/toxicity , Polycystic Ovary Syndrome/diagnostic imaging , Polycystic Ovary Syndrome/epidemiology
2.
Proc Mach Learn Res ; 193: 171-198, 2022.
Article in English | MEDLINE | ID: mdl-37786410

ABSTRACT

Medical treatments tailored to a patient's baseline characteristics hold the potential of improving patient outcomes while reducing negative side effects. Learning individualized treatment rules (ITRs) often requires aggregation of multiple datasets(sites); however, current ITR methodology does not take between-site heterogeneity into account, which can hurt model generalizability when deploying back to each site. To address this problem, we develop a method for individual-level meta-analysis of ITRs, which jointly learns site-specific ITRs while borrowing information about feature sign-coherency via a scientifically-motivated directionality principle. We also develop an adaptive procedure for model tuning, using information criteria tailored to the ITR learning problem. We study the proposed methods through numerical experiments to understand their performance under different levels of between-site heterogeneity and apply the methodology to estimate ITRs in a large multi-center database of electronic health records. This work extends several popular methodologies for estimating ITRs (A-learning, weighted learning) to the multiple-sites setting.

3.
Fertil Res Pract ; 5: 13, 2019.
Article in English | MEDLINE | ID: mdl-31827874

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenemia, oligo-anovulation, and numerous ovarian cysts. Hospital electronic medical records provide an avenue for investigating polycystic ovary morphology commonly seen in PCOS at a large scale. The purpose of this study was to develop and evaluate the performance of two machine learning text algorithms, for classification of polycystic ovary morphology (PCOM) in pelvic ultrasounds. METHODS: Pelvic ultrasound reports from patients at Boston Medical Center between October 1, 2003 and December 12, 2016 were included for analysis, which resulted in 39,093 ultrasound reports from 25,535 unique women. Following the 2003 Rotterdam Consensus Criteria for polycystic ovary syndrome, 2000 randomly selected ultrasounds were expert labeled for PCOM status as present, absent, or unidentifiable (not able to be determined from text alone). An ovary was marked as having PCOM if there was mention of numerous peripheral follicles or if the volume was greater than 10 ml in the absence of a dominant follicle or other confounding pathology. Half of the labeled data was used to develop and refine the algorithms, and the other half was used as a test set for evaluating its accuracy. RESULTS: On the evaluation set of 1000 random US reports, the accuracy of the classifiers were 97.6% (95% CI: 96.5, 98.5%) and 96.1% (94.7, 97.2%). Both models were more adept at identifying PCOM-absent ultrasounds than either PCOM-unidentifiable or PCOM-present ultrasounds. The two classifiers estimated prevalence of PCOM within the whole set of 39,093 ultrasounds to be 44% PCOM-absent, 32% PCOM-unidentifiable, and 24% PCOM-present. CONCLUSIONS: Although accuracy measured on the test set and inter-rater agreement between the two classifiers (Cohen's Kappa = 0.988) was high, a major limitation of our approach is that it uses the ultrasound report text as a proxy and does not directly count follicles from the ultrasound images themselves.

SELECTION OF CITATIONS
SEARCH DETAIL
...