Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 195(3): 1906-1924, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38497551

ABSTRACT

Root hairs (RHs), extensive structures of root epidermal cells, are important for plant nutrient acquisition, soil anchorage, and environmental interactions. Excessive production of the phytohormone ethylene (ET) leads to substantial root hair growth, manifested as tolerance to plant nutrient deficiencies. However, the molecular basis of ET production during root hair growth in response to nutrient starvation remains unknown. Herein, we found that a critical transcription factor, GLABRA 2 (GL2), inhibits ET production during root hair growth in Arabidopsis (Arabidopsis thaliana). GL2 directly binds to the promoter of the gene encoding ET OVERPRODUCER 1 (ETO1), one of the most important ET-production-regulation factors, in vitro and in vivo, and then regulates the accumulation and function of ETO1 in root hair growth. The GL2-regulated-ETO1 module is required for promoting root hair growth under nitrogen, phosphorus, or potassium deficiency. Genome-wide analysis revealed numerous genes, such as ROOT HAIR DEFECTIVE 6-LIKE 4, ETHYLENE-INSENSITIVE 3-LIKE 2, ROOT HAIR SPECIFIC 13, are involved in the GL2-regulated-ETO1 module. Our work reveals a key transcription mechanism in the control of ET production during root hair growth under three major nutrient deficiencies.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ethylenes , Gene Expression Regulation, Plant , Plant Roots , Transcription Factors , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Ethylenes/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Nitrogen/metabolism , Nitrogen/deficiency , Nutrients/metabolism , Phosphorus/deficiency , Phosphorus/metabolism , Homeodomain Proteins
2.
Biochem Biophys Res Commun ; 702: 149627, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38340655

ABSTRACT

Rupture of vulnerable plaque and secondary thrombosis caused by atherosclerosis are one of the main causes of acute cardiovascular and cerebrovascular events, and it is urgent to develop an in-situ, noninvasive, sensitive and targeted detection method at molecular level. We chose CD44, a specific receptor highly expressed on the surface of macrophages, as the target of the molecular probe, and modified the CD44 ligand HA onto the surface of Gd2O3@MSN, constructing the MRI imaging nanoprobe HA-Gd2O3@MSN for targeted recognition of atherosclerosis. The fundamental properties of HA-Gd2O3@MSN were initially investigated. The CCK-8, hemolysis, hematoxylin-eosin staining tests and blood biochemical assays confirmed that HA-Gd2O3@MSN possessed excellent biocompatibility. Laser confocal microscopy, cellular magnetic resonance imaging, flow cytometry and immunohistochemistry were used to verify that the nanoprobes had good targeting properties. The in vivo targeting performance of the nanoprobes was further validated by employing a rabbit atherosclerosis animal model. In summary, the synthesized HA-Gd2O3@MSN nanoprobes have excellent biocompatibility properties as well as good targeting properties. It could provide a new technical tool for early identification of atherosclerosis.


Subject(s)
Atherosclerosis , Nanoparticles , Animals , Rabbits , Hyaluronic Acid/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Cell Line, Tumor , Atherosclerosis/diagnostic imaging
3.
Eur Child Adolesc Psychiatry ; 33(2): 401-410, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36810710

ABSTRACT

This study examined the heterogeneous co-developmental trajectories of aggression and rule-breaking from middle childhood to early adolescence, as well as how these identified, distinct trajectories related to individual and environmental predictors. A total of 1944 Chinese elementary school students in grade 4 (45.5% girls, Mage = 10.06, SD = 0.57) completed measures on five occasions across two and a half years, using six-month intervals. Findings included: (a) Parallel process latent class growth modeling revealed four distinct co-developmental trajectory groups of aggression and rule-breaking: congruent-low (84.0%); moderate-decreasing aggression and high-decreasing rule-breaking (3.8%); moderate-increasing aggression (5.9%); and moderate-increasing rule-breaking (6.3%); (b) Multivariate logistic regression analyses revealed that children belonging to the high risk groups were more likely to experience multiple individual and environmental difficulties. Implications for prevention of aggression and rule-breaking were discussed.


Subject(s)
Adolescent Behavior , Aggression , Female , Humans , Child , Adolescent , Male , Child Development , Child Behavior , Students , Longitudinal Studies
4.
Biosensors (Basel) ; 13(8)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37622876

ABSTRACT

Detecting foodborne pathogens on-site is crucial for ensuring food safety, necessitating the development of rapid, cost-effective, highly sensitive, and portable devices. This paper presents an integrated microfluidic biosensing system designed for the rapid and sensitive detection of Salmonella typhimurium (S. typhimurium). The biosensing system comprises a microfluidic chip with a versatile valve, a recombinase polymerase amplification (RPA) for nucleic acid detection, and a customized real-time fluorescence detection system. The versatile valve combines the functions of an active valve and a magnetic actuation mixer, enabling on-demand mixing and controlling fluid flow. Quantitative fluorescence is processed and detected through a custom-built smartphone application. The proposed integrated microfluidic biosensing system could detect Salmonella at concentrations as low as 1.0 × 102 copies/µL within 30 min, which was consistent with the results obtained from the real-time quantitative polymerase chain reaction (qPCR) tests. With its versatile valve, this integrated microfluidic biosensing system holds significant potential for on-site detection of foodborne pathogens.


Subject(s)
Recombinases , Salmonella typhimurium , Microfluidics , Catheters , Food Safety
5.
Cell Commun Signal ; 21(1): 203, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580771

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is considered to be a risk factor in carcinogenesis and progression, although the biological mechanisms are not well understood. Here we demonstrate that platelet-endothelial cell adhesion molecule 1 (PECAM-1) internalization drives ß-catenin-mediated endothelial-mesenchymal transition (EndMT) to link DM to cancer. METHODS: The tumor microenvironment (TME) was investigated for differences between colon cancer with and without DM by mRNA-microarray analysis. The effect of DM on colon cancer was determined in clinical patients and animal models. Furthermore, EndMT, PECAM-1 and Akt/GSK-3ß/ß-catenin signaling were analyzed under high glucose (HG) and human colon cancer cell (HCCC) supernatant (SN) or coculture conditions by western and immunofluorescence tests. RESULTS: DM promoted the progression and EndMT occurrence of colon cancer (CC). Regarding the mechanism, DM induced PECAM-1 defection from the cytomembrane, internalization and subsequent accumulation around the cell nucleus in endothelial cells, which promoted ß-catenin entry into the nucleus, leading to EndMT occurrence in CC with DM. Additionally, Akt/GSK-3ß signaling was enhanced to inhibit the degradation of ß-catenin, which regulates the process of EndMT. CONCLUSIONS: PECAM-1 defects and/or internalization are key events for ß-catenin-mediated EndMT, which is significantly boosted by enhanced Akt/GSK-3ß signaling in the DM-associated TME. This contributes to the mechanism by which DM promotes the carcinogenesis and progression of CC. Video Abstract.


Subject(s)
Colonic Neoplasms , Diabetes Mellitus , Platelet Endothelial Cell Adhesion Molecule-1 , beta Catenin , Animals , Humans , beta Catenin/metabolism , Colonic Neoplasms/metabolism , Endothelial Cells/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tumor Microenvironment
6.
PLoS One ; 18(3): e0281530, 2023.
Article in English | MEDLINE | ID: mdl-36877688

ABSTRACT

Early blight, caused by the necrotrophic fungus Alternaria solani, is an important foliar disease that causes major yield losses of potato. Effector proteins secreted by pathogens to host cells can inhibit host immune response to pathogens. Currently, the function of effector proteins secreted by A. solani during infection is poorly understood. In this study, we identified and characterized a novel candidate effector protein, AsCEP50. AsCEP50 is a secreted protein that is highly expressed throughout the infection stages of A. solani. Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana and tomato demonstrated that AsCEP50 is located on the plasma membrane of N. benthamiana and regulates senescence-related genes, resulting in the chlorosis of N. benthamiana and tomato leaves. Δ50 mutants were unaffected in vegetative growth, spore formation and mycelium morphology. However, the deletion of AsCEP50 significantly reduced virulence, melanin production and penetration of A. solani. These results strongly supported that AsCEP50 is an important pathogenic factor at the infection stage and contributes to the virulence of Alternaria solani.


Subject(s)
Alternaria , Melanins , Alternaria/genetics , Biological Transport , Agrobacterium tumefaciens
7.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982748

ABSTRACT

Actin filaments are essential for plant adaptation to high temperatures. However, the molecular mechanisms of actin filaments in plant thermal adaptation remain unclear. Here, we found that the expression of Arabidopsis actin depolymerization factor 1 (AtADF1) was repressed by high temperatures. Compared with wild-type seedlings (WT), the mutation of AtADF1 and the overexpression of AtADF1 led to promoted and inhibited plant growth under high temperature conditions, respectively. Further, high temperatures induced the stability of actin filaments in plants. Compared with WT, Atadf1-1 mutant seedlings showed more stability of actin filaments under normal and high temperature conditions, while the AtADF1 overexpression seedlings showed the opposite results. Additionally, AtMYB30 directly bound to the promoter of AtADF1 at a known AtMYB30 binding site, AACAAAC, and promoted the transcription of AtADF1 under high temperature treatments. Genetic analysis further indicated that AtMYB30 regulated AtADF1 under high temperature treatments. Chinese cabbage ADF1 (BrADF1) was highly homologous with AtADF1. The expression of BrADF1 was inhibited by high temperatures. BrADF1 overexpression inhibited plant growth and reduced the percentage of actin cable and the average length of actin filaments in Arabidopsis, which were similar to those of AtADF1 overexpression seedlings. AtADF1 and BrADF1 also affected the expression of some key heat response genes. In conclusion, our results indicate that ADF1 plays an important role in plant thermal adaptation by blocking the high-temperature-induced stability of actin filaments and is directly regulated by MYB30.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Actins/genetics , Actins/metabolism , Arabidopsis Proteins/metabolism , Actin Depolymerizing Factors/genetics , Actin Depolymerizing Factors/metabolism , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Seedlings/genetics , Seedlings/metabolism , Gene Expression Regulation, Plant , Transcription Factors/genetics , Transcription Factors/metabolism
8.
PLoS Genet ; 18(9): e1010338, 2022 09.
Article in English | MEDLINE | ID: mdl-36095000

ABSTRACT

Actin cytoskeleton is essential for root hair formation. However, the underlying molecular mechanisms of actin dynamics in root hair formation in response to abiotic stress are largely undiscovered. Here, genetic analysis showed that actin-depolymerizing protein ADF7 and actin-bundling protein VILLIN1 (VLN1) were positively and negatively involved in root hair formation of Arabidopsis respectively. Moreover, RT-qPCR, GUS staining, western blotting, and genetic analysis revealed that ADF7 played an important role in inhibiting the expression and function of VLN1 during root hair formation. Filament actin (F-actin) dynamics observation and actin pharmacological experiments indicated that ADF7-inhibited-VLN1 pathway led to the decline of F-actin bundling and thick bundle formation, as well as the increase of F-actin depolymerization and turnover to promote root hair formation. Furthermore, the F-actin dynamics mediated by ADF7-inhibited-VLN1 pathway was associated with the reactive oxygen species (ROS) accumulation in root hair formation. Finally, ADF7-inhibited-VLN1 pathway was critical for osmotic stress-induced root hair formation. Our work demonstrates that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair formation in response to osmotic stress, providing the novel evidence on the F-actin dynamics and their molecular mechanisms in root hair formation and in abiotic stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actins/genetics , Actins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Destrin/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Osmotic Pressure , Plant Roots/genetics , Plant Roots/metabolism , Reactive Oxygen Species/metabolism
9.
BMC Plant Biol ; 22(1): 466, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36171557

ABSTRACT

BACKGROUND: Alternaria solani is a typical necrotrophic pathogen that can cause severe early blight on Solanaceae crops and cause ring disease on plant leaves. Phytopathogens produce secretory effectors that regulate the host immune response and promote pathogenic infection. Effector proteins, as specialized secretions of host-infecting pathogens, play important roles in disrupting host defense systems. At present, the role of the effector secreted by A. solani during infection remains unclear. We report the identification and characterization of AsCEP112, an effector required for A. solani virulence. RESULT: The AsCEP112 gene was screened from the transcriptome and genome of A. solani on the basis of typical effector signatures. Fluorescence quantification and transient expression analysis showed that the expression level of AsCEP112 continued to increase during infection. The protein localized to the cell membrane of Nicotiana benthamiana and regulated senescence-related genes, resulting in the chlorosis of N. benthamiana and tomato leaves. Moreover, comparative analysis of AsCEP112 mutant obtained by homologous recombination with wild-type and revertant strains indicated that AsCEP112 gene played an active role in regulating melanin formation and penetration in the pathogen. Deletion of AsCEP112 also reduced the pathogenicity of HWC-168. CONCLUSION: Our findings demonstrate that AsCEP112 was an important effector protein that targeted host cell membranes. AsCEP112 regulateed host senescence-related genes to control host leaf senescence and chlorosis, and contribute to pathogen virulence.


Subject(s)
Anemia, Hypochromic , Plant Diseases , Alternaria/physiology , Melanins , Plant Diseases/genetics
10.
Front Microbiol ; 13: 861113, 2022.
Article in English | MEDLINE | ID: mdl-35633712

ABSTRACT

Alternaria solani is an airborne fungus and the primary causal agent of potato early blight worldwide. No available fungicides that are both effective and environmentally friendly are usable to control this fungus. Therefore, biological control is a potential approach for its suppression. In this study, Bacillus subtilis strain ZD01's fermentation broth strongly reduced A. solani pathogenicity under greenhouse conditions. The effects of strain ZD01's secondary metabolites on A. solani were investigated. The exposure of A. solani hyphae to the supernatant resulted in swelling and swollen sacs, and the ZD01 supernatant reduced A. solani conidial germination significantly. Matrix-assisted laser desorption/ionization time of flight mass spectrometry and pure product tests revealed that fengycins were the main antifungal lipopeptide substances. To elucidate the molecular mechanism of the fengycins' biological control, RNA sequencing analyses were performed. A transcriptome analysis revealed that 304 and 522 genes in A. solani were differentially expressed after 2-h and 6-h fengycin treatments, respectively. These genes were respectively mapped to 53 and 57 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In addition, the most enriched KEGG pathway analysis indicated that the inhibitory mechanisms of fengycins against A. solani regulated the expression of genes related to cell wall, cell membrane, transport, energy process, protein synthesis and genetic information. In particular, cell wall and cell membrane metabolism were the main processes affected by fengycin stress. Scanning and transmission electron microscope results revealed hyphal enlargement and a wide range of abnormalities in A. solani cells after exposure to fengycins. Furthermore, fengycins induced chitin synthesis in treated cells, and also caused the capture of cellular fluorescent green labeling and the release of adenosine triphosphate (ATP) from outer membranes of A. solani cells, which may enhance the fengycins ability to alter cell membrane permeability. Thus, this study increases the transcriptome data resources available and supplies a molecular framework for B. subtilis ZD01 inhibition of A. solani HWC-168 through various mechanisms, especially damaging A. solani cell walls and membranes. The transcriptomic insights may lead to an effective control strategy for potato early blight.

12.
ACS Appl Mater Interfaces ; 14(5): 6869-6875, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35099169

ABSTRACT

The exploration of indurative and stable low-cost catalysts for hydrogen evolution reaction (HER) is of great importance for hydrogen energy economy, but it still faces challenges. Herein, we report a Cl-doped Ni3S2 (Cl-Ni3S2) nanoplate catalyst vertically grown on Ni foam with outstanding activity and durability for HER, which only requires an overpotential of 67 mV to reach a current density of 10 mA cm-2 in alkaline media and exhibits negligible degradation after 30 h of operation. Both the advanced X-ray absorption fine structure (XAFS) and density functional theory (DFT) calculation validate that Cl doping can optimize the electronic structure and the intrinsic activity of Ni3S2. This study devoted to the revelation of the impact of ionic doping on the activity of catalysts at the atomic scale can provide the direction for the rational design of novel and advanced HER electrocatalysts.

13.
Nanoscale ; 13(30): 12951-12955, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34477778

ABSTRACT

The development of Earth-abundant transition metal sulfide electrocatalysts with excellent activity and stability toward the alkaline hydrogen evolution reaction (HER) is critical but challenging. Iron-based sulfides are favored due to their economic benefits and good stability, but their intrinsic catalytic activity still needs to be improved urgently. Herein, we successfully prepared Fe9S10 nanosheet arrays on iron foam (Fe9S10/IF) through a simple one-step method and utilized plasma treatment to introduce S vacancies (Fe9S10-Vs/IF) to regulate their intrinsic catalytic activity. The final materials demonstrate excellent HER performance, and only need 149 mV to drive a current density of 10 mA cm-2 and a small Tafel slope of 50 mV dec-1. The experimental results show that the existence of S vacancies can enhance their intrinsic electrocatalytic activity. This work provides a reference value for the future regulation of iron-based sulfides and is devoted to the development of non-precious metal catalysts toward the HER.

14.
Plant Dis ; 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34410861

ABSTRACT

In July 2020, potato plants (cv. Xisen 6) showing characteristic symptoms of aerial stem rot were observed in a field in Fengning Manchu Autonomous County, Chengde, Hebei Province (northern China). The disease incidence in that field (5 ha in size) was more than 50%. Aerial stem rot of potato has increased in prevalence over recent years in Chengde, it can cause significant yield loss on susceptible cultivars such as Xisen 6 and Huangxin 226. Affected stem (light brown and water-soaked stem sections) pieces ca. 0.5 cm in length were surface-sterilized by dipping them in 75% ethanol for one min and then three successive rinses with sterile distilled water. Then, the tissues were soaked in 200 µl 0.9% saline for 20 min. Aliquots (20 µl) of three tenfold dilutions of the tissue specimen soaking solution were plated onto the crystal violet pectate (CVP) medium. The CVP plates were incubated at 28°C for 48 h. Colonies producing pits were restreaked and purified on Luria-Bertani (LB) agar plates. The bacterial gDNA was extracted using the EasyPure Bacteria Genomic DNA Kit (TransGen Biotech, Beijing, China). The 16S rDNA region was amplified by PCR using the universal primers 27F/1492R (Weisburg et al. 1991) and sequenced. Results of the Blastn analysis of the 16S rDNA amplicons (MZ348607, MZ348608) suggested that the isolates FN20211 and FN20222 belonged to the genus Pectobacterium. Housekeeping genes including acnA, gapA, icdA, mdh, proA and rpoS were also amplified using a set of primers (Ma et al. 2007; Waleron et al. 2008) followed by sequencing (MZ356250-MZ356261). To determine the species of the stem rot Pectobacterium isolates, multi-locus sequence analysis (MLSA) was performed with six housekeeping genes, and phylogenetic tree was reconstructed using RAxML (github.com/stamatak/standard-RAxML). No sequence variation was observed at any MLSA locus between FN20211 and FN20222. The result of phylogenetic analysis showed that the isolates clustered with P. polaris type strain NIBIO1006T, which was isolated from potato (Dees et al. 2017). And the concatenated sequence of the six loci of isolate FN20211/FN20222 is 100% identical to those of the strains PZ1 (CP046377.1) and WBC1 (GCF_011378945.1), which were isolated from potato in South Korea and from Chinese cabbage in China, respectively. Potato seedlings (cv. Xisen 6 and Favorita) were inoculated with the isolates FN20211 and FN20222 by injecting 100 µl of bacterial suspensions (108 CFU·mL-1) into the upper parts of the stems of potato plants, or injected with 100 µl of 0.9% saline as control. The seedlings were grown at 25°C and 50% relative humidity. Three days after inoculation, only the bacteria-inoculated seedlings showed disease symptoms resembling to those observed in the field. Bacterial colonies were obtained from the infected stems and were identified using the same PCR primers as described above. Therefore, P. polaris isolates FN20211 and FN20222 fulfill Koch's postulates for aerial stem rot of potato. P. polaris causing blackleg and soft rot on potato plants has been reported in European countries including Netherlands, Norway (Dees et al. 2017) and Poland (Waleron et al. 2019), and also in Pakistan (Sarfraz et al. 2019) and Russia (Voronina et al. 2021). To our knowledge, this is the first report of P. polaris causing aerial stem rot of potato in China. The stem rot poses a significant threat to the local potato industry, and further research on epidemiology and disease management options is needed.

15.
Nanoscale ; 13(22): 10127-10132, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34060571

ABSTRACT

Designing non-noble-metal electrocatalysts with excellent performance and economic benefits toward the hydrogen evolution reaction (HER) is extremely crucial for future energy development. In particular, the rational cationic-doped strategy can effectively tailor the electronic structure of the catalysts and improve the free energy of the adsorbed intermediate, thus enhancing HER performance. Herein we reported Zn-doped Ni3S2 nanosheet arrays supported on Ni foam (Zn-Ni3S2/NF) that were synthesized by a two-step hydrothermal process for improving HER catalysis under alkaline conditions. Remarkably, the obtained Zn-Ni3S2/NF displays excellent HER catalytic performance with an overpotential of 78 mV to reach a current density of 10 mA cm-2 and dramatic long-term stability for 18 h in 1 M KOH. In addition, the results based on the density functional theory calculations reveal that Zn dopants can modulate the electronic structure of Ni3S2 and optimize the hydrogen adsorption free energy (ΔGH*). Thus cationic-doping engineering provides an efficient method to enhance the intrinsic activities of transition-metal sulfides, which may contribute to the development of nonprecious electrocatalysts for HER.

16.
Front Microbiol ; 12: 808337, 2021.
Article in English | MEDLINE | ID: mdl-35095815

ABSTRACT

The antagonistic mechanisms of soluble non-volatile bioactive compounds, such as proteins and lipopeptides emitted from Bacillus have been widely studied. However, there are limited studies on the antifungal mechanisms of volatile organic compounds (VOCs) produced by Bacillus against plant fungal diseases. In this study, the antagonistic mechanisms of one specific VOC, 6-methyl-2-heptanone, against Alternaria solani were investigated. To optimize the extraction conditions of headspace solid-phase microextraction, a 50/30-µm divinylbenzene/carboxen/polydimethylsiloxane fiber at 50°C for 40 min was used. For gas chromatography-mass spectrometry using a free fatty acid phase capillary column, 6-methyl-2-heptanone accounted for the highest content, at 22.27%, of the total VOCs from Bacillus subtilis ZD01, which inhibited A. solani mycelial growth strongly in vitro. Therefore, 6-methyl-2-heptanone was selected as the main active chemical to elucidate the action mechanisms against A. solani. Scanning and transmission electron microscopy analyses revealed that after exposure to an EC50 dose of 6-methyl-2-heptanone, A. solani hyphal cells had a wide range of abnormalities. 6-Methyl-2-heptanone also caused the capture of cellular fluorescent green label and the release of adenosine triphosphate (ATP) from outer membranes A. solani cells, which may enhance 6-methyl-2-heptanone ability to reach the cytoplasmic membrane. In addition, 6-methyl-2-heptanone showed strong inhibitory effect on A. solani conidial germination. It also damaged conidial internal structures, with the treated group having collapsed shrunken small vesicles as observed by transmission electron microscopy. Because 6-methyl-2-heptanone showed strong effects on mycelial integrity and conidial structure, the expression levels of related pathogenic genes in A. solani treated with 6-methyl-2-heptanone were investigated. The qRT-PCR results showed that transcriptional expression levels of slt2 and wetA genes were strongly down-regulated after exposure to 6-methyl-2-heptanone. Finally, because identifying the functions of pathogenic genes will be important for the biological control of A. solani, the wetA gene was identified as a conidia-associated gene that plays roles in regulating sporulation yield and conidial maturation. These findings provide further insights into the mechanisms of VOCs secreted by Bacillus against A. solani.

17.
Plant Physiol ; 184(1): 176-193, 2020 09.
Article in English | MEDLINE | ID: mdl-32636342

ABSTRACT

Actin binding proteins and transcription factors are essential in regulating plant root hair growth in response to various environmental stresses; however, the interaction between these two factors in regulating root hair growth remains poorly understood. Apical and subapical thick actin bundles are necessary for terminating rapid elongation of root hair cells. Here, we show that Arabidopsis (Arabidopsis thaliana) actin-bundling protein Villin1 (VLN1) decorates filaments in shank, subapical, and apical hairs. vln1 mutants displayed significantly longer hairs with longer hair growing time and defects in the thick actin bundles and bundling activities in the subapical and apical regions, whereas seedlings overexpressing VLN1 showed different results. Genetic analysis showed that the transcription factor GLABRA2 (Gl2) played a regulatory role similar to that of VLN1 in hair growth and actin dynamics. Moreover, further analyses demonstrated that VLN1 overexpression suppresses the gl2 mutant phenotypes regarding hair growth and actin dynamics; GL2 directly recognizes the promoter of VLN1 and positively regulates VLN1 expression in root hairs; and the GL2-mediated VLN1 pathway is involved in the root hair growth response to osmotic stress. Our results demonstrate that the GL2-mediated VLN1 pathway plays an important role in the root hair growth response to osmotic stress, and they describe a transcriptional mechanism that regulates actin dynamics and thereby modulates cell tip growth in response to environmental signals.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Homeodomain Proteins/metabolism , Plant Roots/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Osmotic Pressure , Plant Roots/genetics
18.
Anal Chim Acta ; 1093: 115-122, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31735204

ABSTRACT

A novel polyaniline (PANI)/Eu3+ nanofiber sensing film was prepared in the presence of Eu(NO3)3 which serves as structure-directed agent. The morphological, component, crystallinity and electrochemical properties were carried out by using Scanning Electron Microscope (SEM), Energy-Dispersive X-ray (EDX), Fourier Transform Infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. The results indicated the nanofiber-like network with porous structure appeared in the PANI embedded by Eu3+ ions, thereby leading to large specific surface area. Furthermore, the PANI/Eu3+ nanofibers were grown onto the inner wall of capillary glass to form the tube sensor. By the sensing measurements, this tube sensor enabled the detection of low-volume (0.3 mL) NH3 for response 435% at concentration of 0.25 ppm with a short response time (5 s) and recovery time (5 s), and the performances of reproducibility and selectivity were also excellent. The above results demonstrated the potential application of PANI/Eu3+ tube sensor for low-volume NH3 gas.

SELECTION OF CITATIONS
SEARCH DETAIL
...