Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Life Sci Technol ; 5(2): 242-256, 2023 May.
Article in English | MEDLINE | ID: mdl-37275545

ABSTRACT

Alginate oligosaccharides (AOS), extracted from marine brown algae, are a common functional feed additive; however, it remains unclear whether they modulate the gut microbiota and microbial metabolites. The response of Salmonella enterica serovar Typhimurium, a common poultry pathogen, to AOS fermented with chicken fecal inocula was investigated using metabolomic and transcriptomic analyses. Single-strain cultivation tests showed that AOS did not directly inhibit the growth of S. Typhimurium. However, when AOS were fermented by chicken fecal microbiota, the supernatant of fermented AOS (F-AOS) exhibited remarkable antibacterial activity against S. Typhimurium, decreasing the abundance ratio of S. Typhimurium in the fecal microbiota from 18.94 to 2.94%. Transcriptomic analyses showed that the 855 differentially expressed genes induced by F-AOS were mainly enriched in porphyrin and chlorophyll metabolism, oxidative phosphorylation, and Salmonella infection-related pathways. RT-qPCR confirmed that F-AOS downregulated key genes involved in flagellar assembly and the type III secretory system of S. Typhimurium, indicating metabolites in F-AOS can influence the growth and metabolism of S. Typhimurium. Metabolomic analyses showed that 205 microbial metabolites were significantly altered in F-AOS. Among them, the increase in indolelactic acid and 3-indolepropionic acid levels were further confirmed using HPLC. This study provides a new perspective for the application of AOS as a feed additive against pathogenic intestinal bacteria. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00176-z.

2.
Food Chem ; 420: 136144, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37060669

ABSTRACT

Fucosylated oligosaccharides have promising prospects in various fields. In this study, a fucosylated trisaccharide (GFG) was separated from the acidolysis products of exopolysaccharides from Clavibacter michiganensis M1. Structural characterization demonstrated that GFG consists of glucose, galactose, and fucose, with a molecular weight of 488 Da. Nuclear magnetic resonance analysis showed that it has a different structure than that of 2'-fucosyllactose (2'-FL), even though they have the same monosaccharide composition. In vitro prebiotic experiments were conducted to evaluate the differences in the utilization of three selected carbohydrates by fourteen bacterial strains. In comparison with 2'-FL, GFG could be utilized by more beneficial bacteria, leading to generate more short-chain fatty acids. Moreover, GFG could not promote the proliferation of Escherichia coli. This work describes a novel fucosylated oligosaccharide and its preparation method, and the obtained trisaccharide may serve as a promising candidate for fucosylated human milk oligosaccharides.


Subject(s)
Trisaccharides , Milk, Human/chemistry , Trisaccharides/chemistry , Escherichia coli , Fucose , Glycosylation
3.
J Appl Microbiol ; 133(4): 2599-2617, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35870146

ABSTRACT

AIMS: The aim was to isolate a neotype bifidobacteria strain and evaluate its in vitro probiotic potential. METHODS AND RESULTS: Bifidobacterium pseudolongum YY-26 (CGMCC 24310) was isolated from faeces of mice treated with low-molecular-weight hydrolyzed guar gum (GMPS) and identified based on 16S rRNA sequence and genome sequence. Whole-genome sequencing obtained using PacBio's single-molecular and Illumina's paired-end sequencing technology. A genome of 2.1 Mb in length, with 1877 predicted protein-coding sequences was obtained. Carbohydrate-Activity enZyme analysis revealed that YY-26 encodes 66 enzymes related to carbohydrate metabolism. Whole genome sequence analysis revealed the typical probiotic characteristics of YY-26, including safety in genetic level and ability to produce beneficial metabolites and extracellular polysaccharides. Ability of extensive carbon source utilization and short-chain fatty acid production was observed with single YY-26 cultivation. Considerable acetic acids and lactic acids were determined in GMPS utilization. YY-26 showed tolerance to simulated gastrointestinal tract and displayed appreciable antioxidant activity of free radical scavenging. CONCLUSIONS: B. pseudolongum YY-26 was identified with numerous probiotic-associated genes and its probiotic characteristics were verified in vitro. SIGNIFICANCE AND IMPACT OF STUDY: This study supplemented with limited publicly information regarding the genomes of B. pseudolongum strains and revealed the probiotic potential of YY-26.


Subject(s)
Antioxidants , Probiotics , Animals , Bifidobacterium , Carbohydrates , Carbon , Fatty Acids, Volatile , Free Radicals , Guanosine Monophosphate , Mice , RNA, Ribosomal, 16S/genetics , Thionucleotides
4.
Front Plant Sci ; 13: 1074191, 2022.
Article in English | MEDLINE | ID: mdl-36684746

ABSTRACT

Background and aims: A major goal of community ecology focuses on trying to understand how environmental filter on plant functional traits drive plant community assembly. However, slopes positions- mediated soil environmental factors on community-weighted mean (CWM) plant traits in shrub community has not been extensively explored to analyze and distinguish assembly processes. Methods: Here, we surveyed woody shrub plant communities from three slope positions (foot, middle, and upper) in a low hilly area of Guilin, China to assess differences in functional trait CWMs and environmental factors across these positions. We also measured the CWMs of four plant functional traits including specific leaf area, leaf dry matter content, leaf chlorophyll content, and leaf thickness and nine abiotic environmental factors, including soil water content, soil organic content, soil pH, soil total nitrogen, soil total phosphorus, soil total potassium, soil available nitrogen, soil available phosphorus, and soil available potassium. We used ANOVA and Tukey HSD multiple comparisons to assess differences in functional trait CWMs and environmental factors across the three slope positions. We used redundancy analysis (RDA) to compare the relationships between CWMs trait and environmental factors along three slope positions, and also quantified slope position-mediated soil environmental filtering on these traits with a three-step trait-based null model approach. Results: The CWMs of three leaf functional traits and all soil environmental factors except soil pH showed significant differences across the three slope positions. Soil total nitrogen, available nitrogen, available potassium, and soil organic matter were positively correlated with the CWM specific leaf area and leaf chlorophyll content along the first RDA axis and soil total potassium, total phosphorous, and soil water content were positively correlated with the CWM leaf dry matter content along the second RDA axis. Environmental filtering was detected for the CWM specific leaf area, leaf dry matter content, and leaf chlorophyll content but not leaf thickness at all three slope positions. Conclusions: Ultimately, we found that soil environmental factors vary along slope positions and can cause variability in plant functional traits in shrub communities. Deciduous shrub species with high specific leaf area, low leaf dry matter content, and moderate leaf chlorophyll content dominated at the middle slope position, whereas evergreen species with low specific leaf area and high leaf dry matter content dominated in slope positions with infertile soils, steeper slopes, and more extreme soil water contents. Altogether, our null model approach allowed us to detect patterns of environmental filtering, which differed between traits and can be applied in the future to understand community assembly changes in Chinese hilly forest ecosystems.

5.
J Transl Med ; 19(1): 117, 2021 03 21.
Article in English | MEDLINE | ID: mdl-33743723

ABSTRACT

BACKGROUND: Epigenetic dysregulation plays important roles in leukemogenesis and the progression of acute myeloid leukemia (AML). Histone acetyltransferases (HATs) and histone deacetylases (HDACs) reciprocally regulate the acetylation and deacetylation of nuclear histones. Aberrant activation of HDACs results in uncontrolled proliferation and blockade of differentiation, and HDAC inhibition has been investigated as epigenetic therapeutic strategy against AML. METHODS: Cell growth was assessed with CCK-8 assay, and apoptosis was evaluated by flow cytometry in AML cell lines and CD45 + and CD34 + CD38- cells from patient samples after staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI). EZH2 was silenced with short hairpin RNA (shRNA) or overexpressed by lentiviral transfection. Changes in signaling pathways were detected by western blotting. The effect of chidamide or EZH2-specific shRNA (shEZH2) in combination with adriamycin was studied in vivo in leukemia-bearing nude mouse models. RESULTS: In this study, we investigated the antileukemia effects of HDAC inhibitor chidamide and its combinatorial activity with cytotoxic agent adriamycin in AML cells. We demonstrated that chidamide suppressed the levels of EZH2, H3K27me3 and DNMT3A, exerted potential antileukemia activity and increased the sensitivity to adriamycin through disruption of Smo/Gli-1 pathway and downstream signaling target p-AKT in AML cells and stem/progenitor cells. In addition to decreasing the levels of H3K27me3 and DNMT3A, inhibition of EZH2 either pharmacologically by chidamide or genetically by shEZH2 suppressed the activity of Smo/Gli-1 pathway and increased the antileukemia activity of adriamycin against AML in vitro and in vivo. CONCLUSIONS: Inhibition of EZH2 by chidamide has antileukemia activity and increases the chemosensitivity to adriamycin through Smo/Gli-1 pathway in AML cells (Fig. 5). These findings support the rational combination of HDAC inhibitors and chemotherapy for the treatment of AML.


Subject(s)
Aminopyridines , Leukemia, Myeloid, Acute , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Animals , Apoptosis , Benzamides , Cell Line, Tumor , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Smoothened Receptor
6.
Bone Marrow Transplant ; 55(4): 740-748, 2020 04.
Article in English | MEDLINE | ID: mdl-31645666

ABSTRACT

Mutations of internal tandem duplication in FMS-like tyrosine kinase 3 (FLT3-ITD) contribute to poor prognosis in cytogenetically normal acute myeloid leukemia (CN-AML). Chemotherapy has limited effect, while allogeneic hematopoietic stem cell transplantation (allo-HSCT) plus sorafenib maintenance is a promising protocol to improve their therapeutic outcome. However, the prognostic significance of FLT3-ITD mutant status remains controversial. To investigate this, we detected FLT3-ITD mutant ratio (high and low) and length (long and short) in enrolled 184 CN-AML patients without NPM1 mutation, and evaluated their impact on complete remission (CR), overall survival (OS), relapse-free survival (RFS) and relapse risk (RR) after chemotherapy or allo-HSCT plus sorafenib maintenance. Our studies showed that FLT3-ITD mutation had negative impact on chemotherapeutic response, OS and RFS in CN-AML patients. There was no significant difference in CR rate between high and low ratio, or long and short length. Increasing ITD mutant ratio and length were associated with decreasing OS, and long length had shorter RFS and higher RR than the short after chemotherapy. Allo-HSCT plus sorafenib maintenance was an effective strategy to improve RFS and decrease relapse probability in FLT3-ITD AML patients, and benefited to these regardless of mutant ratio, and those with long length instead of the short.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Alleles , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Nuclear Proteins/genetics , Nucleophosmin , Prognosis , Treatment Outcome , fms-Like Tyrosine Kinase 3/genetics
7.
Immunopharmacol Immunotoxicol ; 38(6): 495-501, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27819568

ABSTRACT

Although the toxicity of high-dose formaldehyde (FA) inhalation has been extensively analyzed in animals, the effect of continuous long-term exposure to low-dose FA has not been well documented. This study aims to evaluate the toxicity of continuous long-term low-dose FA inhalation in mice. Forty-eight Kunming male mice were equally randomized to three groups according to the dose of FA inhalation exposure: a control (0 mg/m3) group, a low-dose (0.08 mg/m3) group and a high-dose (0.8 mg/m3) group. The mice have been selected to expose to FA for different consecutive days at 24 h/day. The learning and memory functions, pathological changes in the lung and liver, and the percentage of CD4 + T and CD8 + T cells were observed and analyzed. It was found that continuous long-term inhalation of FA at relatively low doses could impair the learning and memory functions and induce pathological changes in the lung and liver, but did not seem to significantly affect the number of immune (CD4 + T and CD8 + T) cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Formaldehyde/toxicity , Learning/drug effects , Lung/immunology , Memory/drug effects , Administration, Inhalation , Animals , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Lung/pathology , Male , Mice , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...