Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202406082, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807303

ABSTRACT

Commercial alkaline water electrolysers typically operate at 80 °C to minimize energy consumption. However, NiFe-based catalysts, considered as one of the most promising candidates for anode, encounter the bottleneck of high solubility at such temperatures. Herein, we discover that the dissolution of NiFe layered double hydroxides (NiFe-LDH) during operation not only leads to degradation of anode itself, but also deactivates cathode for water splitting, resulting in decay of overall electrocatalytic performance. Aiming to suppress the dissolution, we employed oxyanions as inhibitors in electrolyte. The added phosphates to the electrolyte inhibit the loss of NiFe-LDH active sites at 400 mA cm-2 to 1/3 of the original amount, thus reducing the rate of performance decay by 25-fold. Furthermore, the usage of borates, sulfates, and carbonates yields similar results, demonstrating the reliability and universality of the active site dissolution inhibitor, and its role in elevated water electrolysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...